
Sun Microsystems, Inc.
www.sun.com

Development Kit User’s Guide

Java Card™ 3 Platform, Version 3.0.2
Connected Edition

December 2009

Please
Recycle

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial Software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Java Card, Java Developer Connection, Mozilla, Netscape, Javadoc, JAR, JDK, JVM, and
NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries, in the U.S. and other countries

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
à l’adresse suivante: http://www.sun.com/patents et un ou plusieurs brevets supplémentaires ou les applications de brevet en attente aux
États - Unis et dans les autres pays.

Droits du gouvernement des États-Unis - Logiciel Commercial. Les droits des utilisateur du gouvernement des États-Unis sont soumis aux
termes de la licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Java Card, Java Developer Connection, Mozilla, Netscape, Javadoc, JAR, JDK, JVM, et
NetBeans sont des marques de fabrique ou des marques déposées enregistrées de Sun Microsystems, Inc. ou ses filiales, aux États-Unis et dans
d’autres pays.

UNIX est une marque déposée aux États-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matière de
contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des États-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations de des produits ou des services qui sont regi par la
legislation americaine sur le contrôle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites..

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE ÀLA QUALITE MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIERE OU À
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xv

Part I Setup, Samples and Tools

1. Introduction 1

Platform Architecture 2

Development Kit Description 3

Connected Edition Features 4

Connected Edition Security Model 5

Application Models 6

Development Kit Contents 6

Reference Implementation 6

Command Line Tools 7

Samples 8

System Requirements 8

Additional Software 8

Java Card TCK 9

2. Installation 11

Prerequisites to Installing the Development Kit 11

Install and Setup the Development Kit 12
iii

▼ Installing the Development Kit 12

▼ Setting Up the System Variables 14

Installed Directories and Files 16

Directories and Files Installed From All Bundles 16

Subdirectories and Files Installed in the src Directory 18

Uninstall the Development Kit 19

Install and Setup the NetBeans IDE 20

▼ Installing the NetBeans IDE 20

▼ Setting Up the Java Card Platform 20

3. Developing Java Card 3 Platform Applications 23

Development Steps 23

4. Using the Samples 27

Running the Samples 28

▼ Running the Samples from the NetBeans IDE 28

▼ Accepting an Untrusted Certificate 29

Using the Web Application Sample 29

Using the HelloWorld Sample 30

▼ Run HelloWorld 30

Using the Classic Applet Sample 31

Using the Extended Applet Sample 31

5. Starting the Java Card Runtime Environment 33

Starting cjcre.exe from the Command Line 33

cjcre.exe Command Line Options 34

Java Card Runtime Environment Configuration Files 36

Adding Proprietary Packages 36

6. Compiling Source Code 37
iv Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Running the Compiler Tool from the Command Line 37

Compiler Tool Options 37

Format 38

Examples 39

7. Creating and Validating Application Modules 41

Packager Operation 41

Options 41

Basic Packaging Sequence 42

Use Cases 42

Signing 43

Use Cases 43

Running the Packager From the Command Line 43

create Subcommand 43

create Subcommand Format 44

create Subcommand Options 44

create Subcommand Examples 46

validate Subcommand 46

validate Subcommand Format 47

validate Subcommand Options 47

validate Subcommand Example 47

copyright Subcommand 48

copyright Subcommand Format 48

copyright Subcommand Options 48

copyright Subcommand Example 48

help Subcommand 48

help Subcommand Format 48

help Subcommand Options 48

help Subcommand Example 49
Contents v

Use Cases 49

8. Loading and Managing Applications 51

Description of the On-Card Installer 51

On-card Installer Operation 52

On-card Installer Functionality 52

Description of the Installer Tool 53

Running the Installer Tool From the Command Line 53

load Subcommand 54

create Subcommand 56

delete Subcommand 58

unload Subcommand 60

list Subcommand 61

help Subcommand 63

Card Installer Use Case 63

Load an Application 64

Pre-Conditions 64

Post-Conditions 64

Sequence of Events 64

9. Backwards Compatibility for Classic Applets 65

Generating Application Modules From Classic Applets 65

Running the Normalizer From the Command Line 66

normalize Subcommand 67

copyright Subcommand 68

help Subcommand 68

Converting Class Files to CAP Files 69

Conversion Process Sequence 70

Specifying an Export Map 71
vi Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Loading Export Files 71

Creating a debug.msk Output File 72

Verification of Input and Output Files 72

File and Directory Naming Conventions 72

Input File Naming Conventions 73

Output File Naming Conventions 73

Running the Converter From the Command Line 74

converter Command Options 74

Using a Command Configuration File 76

Using Delimiters with Command Line Options 76

10. Using the APDU Tool 77

Running the APDU Tool From the Command Line 77

Examples of Using the APDU Tool 78

Directing Output to the Console 79

Directing Output to a File 79

Using APDU Script Files 79

APDU Script File Commands 80

APDU Script Preprocessor Commands 80

11. Debugging Applications 83

Debugger Architecture 83

Running the Debugger From the Command Line 84

debug Subcommand 85

copyright Subcommand 85

help Subcommand 85

Debugging a Java Card 3 Platform Application 85

Compile the Source Code 86

Start the Debugger 86
Contents vii

Attach the Debugger to the IDE 86

Run cjcre.exe With -debug Option 86

Set Break Points 86

Part II Programming With the Development Kit

12. Configuring the RI 91

Configuring Authenticators 91

Creating Custom Protection Domains 92

Creating a Custom Keystore 92

Configuring SSL Support 93

Adding SSL Support 93

Custom Certificates and Keys 94

▼ Generating an SSL Certificate 94

13. Building the RI From Sources 95

Prerequisites to Building the RI 95

Contents of JC_CONNECTED_HOME\src Folder 96

Running the ROMizer Tool From the Command Line 96

romize Subcommand 97

romize Subcommand Options 97

romize Subcommand Example 98

copyright Subcommand 98

help Subcommand 98

Apps list File Contents 99

Example Contents of Apps List File 99

Romizer Tool Output 99

Building a Custom cjcre.exe 100

Preprocessor Symbols to Customize the VM 101

▼ Build a Custom RI From the Command Line 102
viii Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

▼ Test the Custom RI 103

14. Working with APDU I/O 105

The APDU I/O API 105

APDU I/O Classes and Interfaces 105

Exceptions 106

Two-interface Card Simulation 107

Examples of Use 107

To Connect To a Simulator 107

To Establish a T=0 Connection To a Card 108

To Power Up And Power Down the Card 108

To Exchange APDUs 109

To Print the APDU 110

A. Application Module and Library Formats 111

Web Application Module Format 112

Extended Applet Application Module Distribution Format 113

Classic Applet Application Module Format 113

Extension Library Format 114

Classic Library Format 115

Glossary 117

Index 127
Contents ix

x Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Figures

FIGURE 1-1 Architecture of Connected Edition 3

FIGURE 2-1 Uninstalling the Development Kit 19

FIGURE 3-1 Java Card 3 Platform Application Development 24

FIGURE 9-1 Generating Application Modules From Classic Applets 66

FIGURE 11-1 Debugger Architecture 83

FIGURE 13-1 Building cjcre.exe From Sources 101

FIGURE A-1 Web Application Module Format 112

FIGURE A-2 Extended Applet Application Module 113

FIGURE A-3 Classic Applet Application Module 114

FIGURE A-4 Java Platform Standard Edition Library JAR File Format 115

FIGURE A-5 Classic Library Distribution Format 116
xi

xii Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Tables

TABLE 2-1 Directories and Files Installed From All Bundles 16

TABLE 2-2 Contents of the src Directory 18

TABLE 6-1 Compiler Tool Options 37

TABLE 7-1 Packager Tool Input Files and Expected Output 42

TABLE 7-2 Packager Tool Signing Results 43

TABLE 7-3 create Subcommand Options 44

TABLE 7-4 validate Subcommand Options 47

TABLE 7-5 Use Cases for Command Line Arguments 49

TABLE 8-1 load Options 54

TABLE 8-2 create Options 56

TABLE 8-3 delete Options 59

TABLE 8-4 unload Options 60

TABLE 8-5 list Options 61

TABLE 9-1 normalize Subcommand Options 67

TABLE 9-2 converter Command Options 74

TABLE 10-1 apdutool Command Line Options 78

TABLE 10-2 Supported APDU Script File Commands 80

TABLE 11-1 debug Subcommand Options 85

TABLE 13-1 romize Subcommand Options 97
xiii

xiv Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Preface

This document describes how to use the development kit for the Java Card 3
Platform, Connected Edition, Version 3.0.2, to develop applet applications, web
applications, servlets, and extended applets. The Java Card 3 Platform currently
includes Versions 3.0, 3.0.1, and 3.0.2 of Java Card technology.

The Connected Edition architecture uses a new virtual machine and a substantially
different runtime environment from that of the classic platform (an update of the
Java Card technology released in the 2.2.2 release). Java Card technology for the
Connected Edition targets devices that are less resource-constrained than previous
Java Card technology devices. The Connected Edition includes new network-oriented
features, such as support for web applications, including the Java Servlet APIs, and
support for applets with extended and advanced capabilities.

Note – The Java Card 3 platform development kit is released in both binary and
source bundles. Some bundles include cryptography extensions. Portions of this
document are targeted toward specific release bundles and are identified as such
throughout this book.

Refer to the Runtime Environment Specification, Java Card Platform, Version 3.0.1,
Connected Edition and Programming Notes, Java Card 3 Platform, Connected Edition for
additional information about creating extended applets. You must download the Java
Card specifications bundle and the Programming Notes book separately from the
Sun Microsystems web site at:

http://java.sun.com/javacard

Apache Ant (Ant) tasks in the development kit are required to install and run the
development kit tools from the command line. The NetBeans IDE, Version 6.8 or
higher, is required to run the samples and is suggested as your development
environment.
xv

http://java.sun.com/javacard
java.sun.com/products/javacard

Who Should Use This Document
The Development Kit User’s Guide, Java Card 3 Platform, Version 3.0.2, Connected Edition
is written for developers who are:

■ Creating Java Card 3 web and servlet applications or extended applet applications
for the Connected Edition.

■ Creating classic applet applications for the Classic or Connected Editions.

■ Creating a vendor-specific framework based on the specifications for the
Connected Edition.

Before You Read This Document
Before reading this guide, you should become familiar with the Java™ programming
language, object-oriented programming, the specifications for the Connected
Edition, and smart card technology. A good resource for becoming familiar with Java
and Java Card technology is the Java Developer Connection™ web site located at
http://java.sun.com.

How This Book Is Organized
The guide is divided into two parts. The Part I describes how to set up the
development kit, how to use the samples, and how to use the development kit tools.
Part II describes various programming issues for the Java Card 3 platform.

Part I: Setup, Samples and Tools

Chapter 1, provides an overview of the development kit for the Connected Edition.

Chapter 2 describes the procedures for installing the tools required for this release.

Chapter 3 provides a brief description of the steps involved in Java Card application
development.

Chapter 4 describes where to find the entire set of samples designed for the Java
Card 3 platform, with further details for the set of samples included in this
development kit. To run the samples, the NetBeans IDE, Version 6.8, is required.
xvi Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

http://java.sun.com

Chapter 5 describes the reference implementation of the Connected Edition and
provides the procedures used to start it.

Chapter 6 describes how to compile source files outside of an IDE by using the
Compiler tool included with the development kit.

Chapter 7 describes how to use the Packager tool to create and validate a Java Card
technology-based application module.

Chapter 8 describes how to use the Installer tool to perform card management tasks.

Chapter 9 describes how to use the tools provided by the development kit to modify
classic applets to run on the Java Card 3 platform.

Chapter 10 describes the APDU tool and how it is used when installing and running
applets on a smart card.

Chapter 11 describes how to install and to use the Debugger tool in Java Card 3
platform applications development.

Part II: Programming With the Development Kit

Chapter 12 describes the options used to configure the RI, including how to generate
and install SSL keys.

Chapter 13 describes how developers can modify or add to source files of the RI
including VM code, and all tools (such as the Packager and Installer) and build a
customized Java Card 3 platform RI according to their specific requirements.

Chapter 14 describes the APDU I/O API, which is a library used by development kit
components, such as apdutool.

Appendix A describes the application module and library formats supported by the
Java Card 3 platform card manager.

Glossary describes key terms used in this document.

Related Documents
References to various documents or products are made in this manual. Have the
following documents available:

■ Application Programming Interface, Java Card Platform, Version 3.0.1,Connected Edition

■ Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition

■ Virtual Machine Specification, Java Card Platform, Version 3.0.1, Connected Edition
Preface xvii

■ Application Programming Notes, Java Card Platform, Version 3.0.1, Connected Edition

■ ISO 7816 Specification Parts 1-6

■ Java Card Platform, Version 3.0, White Paper

■ Java Card Technology for Smart Cards: Architecture and Programmer’s Guide by Zhiqun
Chen (Addison-Wesley, 2000)

■ Java Servlet Specification, Java Card Platform, Version 3.0.1, Connected Edition

■ Off-Card Verifier, Java Card 2.2.2, White Paper

■ The Java Programming Language (Java Series), Fourth Edition by James Gosling, Ken
Arnold, and David Holmes (Addison-Wesley, 2005)

■ The Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm
and Frank Yellin (Addison-Wesley, 1999)

Specifications, Standards, Protocols and
Technologies
The Connected Edition supports the following specifications, standards, protocols,
and technologies:

■ ETSI SCP and UICC specification for 3G mobile phones.

■ ISO 7816-4:1995 Identification cards - Integrated circuit cards with contacts part 4,
inter-industry commands for interchange.

These specifications describe the communication transport and application
protocol layer between the terminal and the card.

■ ISO 7816-4:2004 Identification cards - Integrated circuit cards with contacts part 4,
inter-industry commands for interchange.

■ EMV 2000 Integrated Circuit Card specifications for payment systems.

These standards enable the correct operation and interoperability of payment
applications on terminals and smart cards.

■ GlobalPlatform card specification

These card specifications are built on top of the Java Card specifications to provide
interoperable content and lifecycle management for multifunction payment cards.
xviii Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Typographic Conventions

Accessing Documentation Online
The Java Developer Connection™ program web site enables you to access Java
platform technical documentation on the web at

http://java.sun.com/reference/docs

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output
Procedural steps

% su
Password:

1. Run cjcre in a new window.

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.
Preface xix

http://java.sun.com/reference/docs

resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments and
suggestions. You can submit your comments about this document to the following
address:

jc3-ri-feedback@sun.com

Please include the following title of this document with your feedback:

Development Kit User’s Guide, Java Card 3 Platform, Version 3.0.2, Connected Edition
xx Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

jc3-ri-feedback@sun.com

PART I Setup, Samples and Tools

This part of the user’s guide describes how to install the development kit and use its
tools and samples.

CHAPTER 1

Introduction

The Java Card 3 Platform, Version 3.0.2 consists of two editions, the Classic Edition
and the Connected Edition.

■ The Classic Edition is based on an evolution of the Java Card Platform, Version
2.2.2 and is backward compatible with it, targeting resource-constrained devices
that solely support applet-based applications. Applets that run on the Classic
Edition are referred to as classic applets. The classic applets have the same
capabilities as applets in previous versions of the development kit.

■ The Connected Edition contains a new architecture that enables developers to
integrate smart cards within IP networks and web services architectures. The
Connected Edition supports extended applets and servlets to allow for these new
capabilities. In addition, the Connected Edition also supports classic applets.

This document applies to the Connected Edition. References to components, such as
the Java Card runtime environment (RE), refer to the component as it exists in the
Connected Edition. However, the development kit for the Connected Edition, and
the NetBeans IDE can be used to create classic applets that will also run on the
Classic Edition RE.

The Java Card development kit ships in binary-only bundles or bundles with both
binary and source versions of the kit. This document pertains to both binary and
source bundles, except where noted. In addition, cryptography extensions are
available in some bundles. Cryptography issues are described in this document.

This chapter contains the following sections:

■ Platform Architecture

■ Development Kit Description

■ System Requirements

■ Additional Software

■ Java Card TCK
1

Platform Architecture
The Connected Edition contains a new architecture that enables developers to
integrate smart cards within IP networks and web services architectures and features
an enhanced runtime environment and virtual machine, with network-oriented
features that support web applications. The Connected Edition supports both a web
application model and an applet application model. The applet application model
supports two types of applet applications - legacy applets and extended applets.
Extended applets leverage the Connected Edition features while continuing to use
the APDU communication model.

Java Card 3 Platform, Connected Edition technology provides high-end smart cards
with improved connectivity and integration into all-IP networks. A high-end, Java
Card 3 technology-enabled smart card can act as a secure network node, capable of
providing security services to the network or requesting access to network resources.
It also allows for the convergence of smart-card services by handling multiple,
concurrent communications through contact interfaces, using IP or ISO 7816-4
protocols, and through contactless interfaces, using the ISO 14443 protocol.

The high-level architecture of the Java Card 3 Platform, Connected Edition is
illustrated in FIGURE 1-1. Notice the classic APIs in a Connected Edition are built on
smart cards that implement a view of the strict, classic Java Card VM, which
supports only classic applet applications. However, the Connected Edition Java Card
VM also supports extended applets and servlets, which are for web applications.
2 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

FIGURE 1-1 Architecture of Connected Edition

The development kit ships with a default Java Card RE that simulates a Java Card
Platform, Connected Edition as it would be implemented onto a smart card. The
default Java Card RE is the reference implementation (RI), and is invoked on the
command line with cjcre.exe. The RI implements the ISO 7816-4:2005
specification, including support for up to twenty logical channels, as well as the
extended APDU extensions as defined in ISO 7816-3.

The RI was designed to simulate a dual T=1 contacted and T=CL contactless
concurrent interface implementation of the Java Card runtime environment, with the
capability to operate on both interfaces simultaneously. The RI source code can be
built and configured to support all the ISO 7816-3 and ISO 14443-4 smart card
protocols, including T=0 single interface, T=1 single interface, T=CL single
contactless interface and T=1/T=CL dual concurrent interface.

Development Kit Description
This development kit describes how to use the command-line tools included in this
bundle. It enables you to create applications that utilize the Connected Edition new
network-oriented features, such as support for web applications, including the

Host Operating System and Device Hardware

Java Card VM

Connected APIs Java Card Classic APIs

Servlet Container Applet Container

Applet Framework APIServlet API

Applet AppWeb App

S
ervlet

S
ervlet

Web App

S
ervlet

S
ervlet

E
xtended
A

pplet

E
xtended
A

pplet

Applet App

E
xtended
A

pplet

Applet AppApplet App

C
lassic

A
pplet

C
lassic

A
pplet

C
lassic

A
pplet

Strict Java Card Classic
VM View
Chapter 1 Introduction 3

Java™ Servlet APIs, as well as applets with extended and advanced capabilities. Any
valid application written for, or any valid implementation of, the Connected Edition
may also use features found in the Classic Edition.

Note – In this release, you will be able to use the development kit command-line
tools or the NetBeans IDE to create applications for both Classic and Connected
Editions. The NetBeans IDE is the suggested development environment. For details
on using the NetBeans IDE for development, see the Java Card platform-specific
online help provided in version 6.8 of the NetBeans IDE under Help > Help
Contents. For details on programming for the Classic Edition, please see the user’s
guide in the Classic Edition development kit.

This development kit includes a suite of tools, a reference implementation, and the
associated documentation for developers to use when developing Java Card
technology-based applications (Java Card 3 platform applications), servlets, and
extended applets for the Connected Edition. Developers can use the development kit
tools to create applications that fully utilize the features of the Connected Edition.

Connected Edition Features
Developers creating implementations or applications for the Connected Edition
should be aware of the following features of the Connected Edition that represent
key security and usability characteristics of Java Card technology-based smart cards
and ensure the backward-compatibility and scalability of the platform:

■ File system

■ Security for the Java Card 3 platform (Java Card security)

■ Firewall mechanism

■ Secure application update and upgrade

■ Support for transactions, atomicity

■ Card lifecycle-aware runtime environment

■ Persistent memory model

■ Standards alignment

■ ISO 7816 compliance

■ T=0, T=1, T=CL, USB, and MMC protocols support

■ GP, ETSI/3GPP support

■ Binary compatibility for Java Card 3 platform classic products

■ Tools-automated application migration to Connected Edition products

■ Legacy applications can be modified to use Connected Edition features
4 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

■ Scalability

■ Optional features optimize footprint

■ Unified distribution file format

■ TCK- enforced interoperability

Developers using the development kit to create applications for the Connected
Edition should also be aware that the following features are exclusive to the
Connected Edition:

■ KVM-level VM technology

■ 32-bit VM

■ Dynamic .class file loading

■ Concurrent execution of applications

■ On-card and off-card bytecode verification

■ Automatic GC

■ Network-oriented communication

■ Embedded web server

■ Service static and dynamic content through HTTP(s)

■ APDU and non-APDU comm support

■ Generic Communication API

■ Communication over USB, MMC

■ Management of concurrent contacted/contactless card access

■ Client mode

■ Connected Edition APIs

■ Support for additional Java language types char and long

■ String support

■ Multi-dimensional arrays

■ Object collections and large data structures

■ Generic event framework

■ Application code and data sharing enhancements

Connected Edition Security Model
The Connected Edition security model includes the following components and
features:

■ Class file verification

■ Code isolation
Chapter 1 Introduction 5

■ Context isolation (firewall)

■ Policy-based access control

■ Enhanced shareable interface mechanism

■ Transport-level (SSL/TLS) web application security

■ Web application client and card holder authentication

■ Per-application declarative security

■ Key and trust management

Application Models
The Connected Edition provides support for web applications, extended applets and
legacy applet-based applications.

Web Applications

The Connected Edition provides support for typical web applications including
servlets, filters, and listeners. The web application model is only available on
implementations for the Connected Edition.

Extended Applets and Legacy Applet-Based Applications

For developers, the extended applet application model of the Connected Edition
provides a migration path for legacy, applet-based applications to the Connected
Edition.

Development Kit Contents
The development kit is delivered in executable Java archive (JAR) files. Each JAR file
bundle includes the binaries of a Java Card virtual machine, APDU tool, compiler
tool, converter tool, debugger tool, installer tool, normalizer tool, packager tool,
ROMizer tool, and uninstaller tool for the development kit. The source bundles
include the binaries, and also include the source files used to build the binaries.

Reference Implementation
The Connected Edition reference implementation is located in the bin directory with
a program name of cjcre.exe. See Chapter 5 for detailed information about
running the reference implementation from the command line.
6 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Development KitDevelopment KitCommand Line Tools
Chapter 3 describes the sequence of development activities and the tool chain used
in developing Java Card 3 applications.

The development kit bundle contains the following tools:

■ Compiler Tool- Compiles Java Card 3 platform application source files.

See Chapter 6 for information about using the Compiler tool.

■ Packager Tool - Packages application modules and libraries into a deployable
application group.

See Chapter 7 for information about using the Packager tool.

■ Installer Tool - Interacts with the on-card card manager to install applications and
applets.

See Chapter 8 for information about using the Installer tool as a stand-alone
application.

■ APDU Tool - When loading an applet, reads a script file containing Application
Protocol Data Unit (APDU) commands and sends them to the C Java Card
Runtime Environment where each APDU command is processed and returned to
apdutool, which displays both the command and response APDU commands on
the console as a stand-alone application.

See Chapter 10 for information about using the APDU tool.

■ Normalizer Tool - Generates application modules for a Java Card 3 platform
smart card from a converted applet format.

See Chapter 9 for information about using the Normalizer tool.

■ Converter Tool - Converts Java class files into a format that can be loaded onto
and run on a Java Card 3 platform smart card.

See Chapter 9 for information about using the Converter tool.

■ Debugger Tool - Used during development of Java Card 3 platform applications
to suspend the VM, step over source code, and inspect variables.

See Chapter 11 for information about using the Debugger tool.

■ ROMizer Tool - Creates a ROM image to use in building a custom cjcre.exe.

See Chapter 13 for detailed information about creating a ROM image file and
building a custom cjcre.exe.

■ Uninstaller Tool - Safely uninstalls this development kit. See “Uninstall the
Development Kit” on page 19.
Chapter 1 Introduction 7

Samples
The Java Card 3 platform samples provide a demonstration of the features in the
Connected Edition and source code that gives an introduction to Java Card 3
platform programming. See Chapter 4 for a description of the samples included with
this development kit and where to find additional samples on http://kenai.com.
The Connected Edition samples must be run from within the plugin provided with
the NetBeans IDE, version 6.8, which is available for download from
http://netbeans.org.

System Requirements
This release of the development kit executes on the Microsoft Windows XP SP2
operating system with an IDE of the developer’s choice. However, the NetBeans IDE
is strongly recommended because without it, you cannot run the samples.

Additional Software
The following additional software is required by the development kit. See Chapter 2
for download and installation information.

■ Apache ANT - Apache Ant 1.6.5 or higher is required to run the samples or build
the cjcre.exe from source code.

■ Firefox browser - The trusted agent for running the RI.

■ Internet Explorer 7 browser - Used as a remote client and not the trusted agent.

■ GCC compiler - If you are using the source bundle, the Minimal GNU for
Windows (MinGW) version 5.1.4 is required to build the cjcre.exe or tools
from source code. If you are using a binary bundle, MinGW is not required.

Note – MinGW is not required to run or to develop applications.

■ Java Development Kit - The commercial version of Java Development Kit
(JDK™) version 6 update 10 or higher (JDK version 1.6) is required.

■ NetBeans IDE - The NetBeans IDE 6.8, including the Java Card platform plugin,
can be used to develop applications and run the samples.
8 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

http://netbeans.org
http://kenai.com

Java Card TCK
The Java Card Technology Compatibility Kit (Java Card TCK) is a portable,
configurable automated test suite for verifying the compliance of your
implementation with the Java Card specification. To be in compliance, an
implementation of the Java Card 3 platform, Connected Edition specification must
pass the Java Card TCK 3.0.2 tests as described in Java Card Technology Compatibility
Kit, Version 3.0.2 User’s Guide.
Chapter 1 Introduction 9

10 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 2

Installation

This chapter describes the prerequisites you need to install on your system before
you use the development kit, how to install the development kit and the NetBeans
IDE, how to set system variables, and how to uninstall the development kit. This
chapter also lists the files installed onto your system by the Connected Edition of the
development kit. You can run both a Classic and Connected development kit
simultaneously.

Binary and source code development kits are available for the Microsoft Windows
XP SP2 operating system. Source code bundles allow you to change the development
kit’s reference implementation, whereas the binary bundles allow you only to use
the reference implementation.

Each development kit is provided in an executable JAR file bundle. See Chapter 1 for
a description of this development kit bundle and a list of all the files installed by this
development kit.

Note – The Java Card specifications are not included in the development kit bundle.
The specifications must be downloaded separately.

Prerequisites to Installing the
Development Kit
The following software must be installed before installing the development kit:

■ Apache ANT - download and install Apache Ant version 1.6.5 or higher from
http://ant.apache.org.

■ Firefox browser - download the Firefox browser from
http://www.mozilla.com.
11

http://ant.apache.org
http://www.mozilla.com

■ GCC compiler - download and install MinGW from
http://sourceforge.net/projects/mingw and install it according to the
instructions on the http://www.mingw.org web site.

■ Java Development Kit - download the JDK software from
http://java.sun.com/javase/downloads and install it according to the
instructions on the web site.

■ NetBeans IDE (optional IDE, required to run samples) - download the NetBeans
IDE version 6.8 from http://www.netbeans.org/downloads and install it
according to the instructions on the web site.

Install and Setup the Development Kit
This section describes how to install and set up the development kit.

▼ Installing the Development Kit
1. Verify that the additional software required by the development kit is installed

on the development system.

See “Prerequisites to Installing the Development Kit” on page 11 for the
download location and installation instructions of the required additional
software.

2. Download an appropriate development kit JAR file to a directory of your
choice.

3. Launch the development kit installer.

The development kit can be launched automatically when you download the JAR
file or by using the Windows file manager tool to navigate to the directory
containing the development kit JAR file and double clicking the file name or icon.

The development kit can also be launched by opening a Command Prompt
window, navigating to the directory containing the development kit JAR file, and
executing the following command from the command line:

java -jar Bundle-Filename

In the command, Bundle-Filename is the name of the downloaded development kit
JAR file.

The installation wizard displays the following screen.
12 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

http://www.mingw.org
http://sourceforge.net/projects/mingw
http://java.sun.com/javase/downloads
http://www.netbeans.org/downloads

4. Complete each action requested by the installer.

By default, the development kit for the Connected Edition is installed in:

C:\JCDK3.0.2_ConnectedEdition

If you specify a different installation directory, the names of the installation
directory and its parent must not contain a space.

For example, the installation directory cannot be located in C:\program files
because of the space in the program files directory name.

Note – The installation directory (either the default directory or the alternate
installation directory you specify) is referred to as JC_CONNECTED_HOME.

5. Click the Finish button to complete installation.

The bundle installs files and directories containing the binary files and source
code described in “Directories and Files Installed From All Bundles” on page 16.
The files and directories are installed under the root installation directory, either
C:\JCDK3.0.2_ConnectedEdition or the directory you specified during
installation. The root installation directory is referred to as
JC_CONNECTED_HOME in this document.
Chapter 2 Installation 13

▼ Setting Up the System Variables
1. Set the JAVA_HOME system variable to the JDK root directory.

Before running the development kit, you must set the JAVA_HOME environment
variable permanently in the Windows Control Panel or temporarily from the
command line:

■ To permanently set JAVA_HOME, go to Windows Control Panel > System >
Advanced > Environment Variables dialog and either create or edit a System
variable named JAVA_HOME with the literal value of the JDK root directory on
your system. For example, in the System variables box enter the following:

■ To temporarily set JAVA_HOME, enter the following command in a Command
Prompt window:

set JAVA_HOME=C:\java_home_path;

For example, if the Java platform software is stored in the c:\jdk6 directory,
enter:

set JAVA_HOME=C:\jdk6;

Note – If using the Category view, choose Windows Control Panel > Performance
and Maintenance > System > Advanced to open the Environment Variables panel.

2. Set the ANT_HOME system variable to the Ant root directory.

Before running the development kit, you must set the ANT_HOME environment
variable permanently in the Windows Control Panel or temporarily from the
command line:

■ To permanently set ANT_HOME, go to Windows Control Panel > System >
Advanced > Environment Variables dialog and either create or edit a System
variable named ANT_HOME so that its value is the Apache Ant folder. For
example, in the System variables box enter the following:

■ To temporarily set ANT_HOME, enter the following command in a Command
Prompt window:

set ANT_HOME=C:\ANT_HOME_path;

For example if Ant was installed in C:\ant\apache-ant1.6.5, enter:

Variable Value
JAVA_HOME C:\JAVA\jdk1.6.0_10

Variable Value
ANT_HOME C:\ant\apache-ant-1.6.5
14 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

set ANT_HOME=C:\ant\apache-ant1.6.5;

3. Set the JC_CONNECTED_HOME system variable to the development kit root
directory.

Before running the development kit, you must set the JC_CONNECTED_HOME
environment variable permanently in the Windows Control Panel or temporarily
from the command line:

Note – Some of the command line tools require that the JC_CONNECTED_HOME
variable is set correctly.

■ To permanently set JC_CONNECTED_HOME, go to Windows Control Panel >
System > Advanced > Environment Variables dialog and either create or edit a
system variable named JC_CONNECTED_HOME variable so that its value is
either C:\JCDK3.0.2_ConnectedEdition or the directory you specified
during installation. For example, in the System variables box enter the
following:

■ To temporarily set JC_CONNECTED_HOME, enter the following command in a
Command Prompt window:

set JC_CONNECTED_HOME=C:\JC_CONNECTED_HOME_path;

For example if you installed in C:\JCDK3.0.2_ConnectedEdition, enter:

set JC_CONNECTED_HOME=C:\JCDK3.0.2_ConnectedEdition;

4. Add %JAVA_HOME%, %JC_CONNECTED_HOME%, and %ANT_HOME% to the Path
variable displayed in the Environment Variables panel.

5. Add MinGW to the Path variable.

MinGW is not required if only the development kit binary bundle is installed. If
the development kit source bundle is installed, set the MinGW environment
variable permanently in the Windows Control Panel or temporarily from the
command line:

■ To permanently set the MinGW path, edit the Path variable in the System
variables box to include the location of MinGW\bin:

C:\MinGW\bin;

■ To temporarily set the MinGW path, enter the following command in a
Command Prompt window:

set PATH=C:\MinGW_path;%PATH%

For example, if MinGW is installed in the C:\MinGW directory, enter:

Variable Value
JC_CONNECTED_HOME C:\JCDK3.0.2_ConnectedEdition
Chapter 2 Installation 15

set PATH=C:\MinGW\bin;%PATH%

Note – If you choose to set the JAVA_HOME variable and MinGW PATH each time
you run the development kit, place the appropriate JAVA_HOME variable and
MinGW PATH commands in a batch file.

Installed Directories and Files
A development kit binary bundle installs the subdirectories and files described in
TABLE 2-1. A development kit source bundle installs all the subdirectories and files
described in TABLE 2-1, plus the source subdirectories and files described in TABLE 2-2.

Directories and Files Installed From All Bundles
These files and directories are installed by the development kit under the root
installation directory, C:\JCDK3.0.2_ConnectedEdition, or in the directory that
you specified during installation.

TABLE 2-1 Directories and Files Installed From All Bundles

Directory or File Description

COPYRIGHT-software.html The copyright file for the Java Card 3 platform.

COPYRIGHT-docs.html The copyright file for the documentation of the Java Card 3
platform.

RELEASENOTES.html The release notes for this Java Card 3 platform development
kit.

document.css The style sheet for the HTML documentation.

platform.properties Specifies properties of the Java Card 3 platform RI that are
used by the tools.

api_export_files\ Contains java, javacard, and javacardx directories of
API export files.

bin\ Contains all shell scripts and batch files (including the
cjcre.exe binary executable) used in running the tools.
16 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

docs\ Contains the following:
• api folder - The Javadoc tool files for the RI API in HTML

format.
• JCDevKitUG-Connected-3_0_2.pdf - This user’s

guide.
• UserGuide_html folder - The HTML version of this

user’s guide.
• apduio folder - The Javadoc tool files for the publicly

available APDU I/O client classes.

legal\ Contains three files:
• TechnologyEvaluationLicense.txt - License for the

Java Card 3 platform.
• THIRDPARTYREADME.txt - License for the Jetty HTTP

Server.
• Distribution_ReadME.txt - Describes the terms and

conditions for redistribution of the Java Card
development kit.

lib\ Contains all Java programming language JAR files and
config files required for the tools:

• ant-contrib-1.0b3.jar

• api_classic.jar

• api_connected.jar

• asm-all-3.1.jar

• bcel-5.2.jar

• commons-cli-1.0.jar

• commons-codec-1.3.jar

• commons-httpclient-3.0.jar

• commons-logging-1.1.jar

• config.properties

• jcapt.jar

• jctasks.jar

• nbtasks.jar

• nbutils.jar

• romizer.jar

• system.properties

• tools.jar

Uninstaller\ Contains the file uninstaller.jar to safely uninstall this
development kit.

TABLE 2-1 Directories and Files Installed From All Bundles (Continued)

Directory or File Description
Chapter 2 Installation 17

Subdirectories and Files Installed in the src
Directory
The src directory is installed only from a source bundle and contains the source
code for the Java Card API, the romized applications, the development kit tools, and
the Java Card virtual machine.

TABLE 2-2 describes the contents of the subdirectories and files installed under the
src directory.

samples\classic_applets Contains the sample HelloWorld classic applet application
adapted to run on the Connected Edition.

samples\
extended_applets

Contains the sample extended applet application.

samples\keystore Contains keystore and other certificate files for use by the
samples provided in this release. These keystore and other
certificate files are for demonstration purposes only and
cannot be used for developing deployable applications.

samples\web Contains the sample web application.

TABLE 2-2 Contents of the src Directory

Directory or File Description

build.xml Resource file for rebuilding the development kit source bundle.

apiImpl.jar

bat.template

crypto.jar

api\ Sources for the Java Card API version 3.0.2 in the following
subdirectories:
• com\sun

• java

• javacard

• javacardx

• javax

• org\mortbay

TABLE 2-1 Directories and Files Installed From All Bundles (Continued)

Directory or File Description
18 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Uninstall the Development Kit
To uninstall the development kit, Version 3.0.2, run the Uninstaller tool found in
your development kit at Uninstaller\uninstaller.jar. Do not change the location of
this tool. Before running the Uninstaller, it is advisable to exit all development kit
tools and the NetBeans IDE. Files under the control of your OS will not be
uninstalled using the Uninstaller.

In the Uninstaller’s dialog box, selecting the check box or not will have the same
result, the development kit directory that the Uninstaller is in will be deleted,
including the Uninstaller itself, see FIGURE 2-1.

FIGURE 2-1 Uninstalling the Development Kit

You can also uninstall a development kit for any Java Card Platform release by
simply deleting all its directories and files from your hard drive.

romized_apps\ Sources for the CardManager servlet.

tools\ Sources for development kit tools.

vm\ Sources for the Java Card virtual machine in the following
subdirectories and file:
c - C programming language sources.
h - Header files for the C programming language sources.
lib - System and internal web configuration files
ignore.list - List of classes ignored by the ROMizer

TABLE 2-2 Contents of the src Directory (Continued)

Directory or File Description
Chapter 2 Installation 19

Install and Setup the NetBeans IDE
The NetBeans IDE, version 6.8, is required to run the samples. It is also
recommended as your development environment, although alternatively, the
development kit tools can be used from the command line.

To use the Java Card platform-specific plugin in the NetBeans IDE, you must add
and configure the Java Card Platform.

▼ Installing the NetBeans IDE
1. Go to http://www.netbeans.org.

2. Download version 6.8.

Earlier versions of the NetBeans IDE and the plugin will not work with version
3.0.2 of the development kit. Within version 6.8 of the NetBeans IDE, the Java
Card platform-specific plugin might already be installed. Check the installed
plugins list and, if the Java card plugins are not installed, locate them on the
NetBeans IDE update center and install them into the NetBeans IDE.

▼ Setting Up the Java Card Platform
1. In the NetBeans IDE, version 6.8, go to Tools > Java Platforms and click

Add Platform.

You setup the Java Card Platform as you would any other Java Platform. If the
Java Card Platform does not appear on the list of platform types, you might need
to exit the NetBeans IDE and restart it.
20 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

http://www.netbeans.org

2. Select Java Card Platform and click Next.

3. Navigate to and choose the directory where you installed the Java Card
Platform development kit and click Next.

In the documentation for the development kit this directory is referred to as
JC_CONNECTED_HOME.

4. Click Finish.

5. Click Close.

Once the installation is complete, there will be a new node, Java Card
Runtimes, in the Services window. If the Services window is not already
displayed, choose Window, then choose Services to activate it.

6. Confirm Java Card Platform node is listed in Services window below the
Java Card Runtimes node.
Chapter 2 Installation 21

7. Confirm the Default Device instance is listed in the Services window below
the Java Card Platform node.

8. In the Tools > Plugins dialog box, confirm the Available Plugins Tab
lists the Java Card platform-specific plugin.
22 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 3

Developing Java Card 3 Platform
Applications

This chapter provides a brief description of the activities and development kit tools
involved in developing applications for the Java Card 3 platform. Whether you use
the development kit tools or the NetBeans IDE as your development environment,
these same, basic activities apply. If you are enabling classic applets to run on
Connected Edition and Classic Edition cards, see Chapter 9.

Development Steps
The steps described in FIGURE 3-1 illustrate the sequence of activities completed by a
developer when creating an application for the Java Card 3 platform. See the
Application Programming Notes, Java Card Platform, Version 3.0.1, Connected Edition for
additional, advanced information not provided in this guide about creating
applications for the Java Card 3 platform.
23

FIGURE 3-1 Java Card 3 Platform Application Development

1. Source files - Write the source code and create the descriptor files.

The development kit also provides sample application source code that
developers can use in creating custom applications. See Chapter 4 for a
description of the samples provided in the development kit.

2. Compile/build - Compile the source code.

See Chapter 6 for a description of using the Java Card 3 platform Compiler tool
(javacardc.bat) as a stand-alone application.

3. Packager - Package the compiled source code.

See Chapter 7 for a description of using the Packager tool to create and validate
application modules.

4. Off-Card Installer - Load the application and create instances on the card by
using the Installer tool.

See Chapter 8 for a description of using the Off-Card Installer (Installer) tool and
the associated on-card installer used to load an application module onto the card,
create an instance of an application, delete (deactivate) an instance of an
application, remove a module or application from the card, and display
information about loaded applications and instances.

5. Browser/Client - Access the application on the card by using a client (browser or
APDU tool).

Other
Resources

Ready to
Deploy
Module

Java
Source
Files

Compile /
Build

Browser / Client

Off-Card Installer

Packager

Card Load

Create

Delete

Unload
24 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

See Chapter 10 for description of using the APDU tool to display command and
response APDU commands on the console.
Chapter 3 Developing Java Card 3 Platform Applications 25

26 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 4

Using the Samples

The samples included with the development kit demonstrate the basic features of
the Java Card API, Connected Edition. The samples in this development kit include
a simple web application, extended applet application, and classic applet
application. Instructions on how to run the samples in this development kit are
available in the online help for the Java Card platform plugin in the NetBeans IDE.

In addition to the three samples in this development kit, many additional samples
are available through the NetBeans IDE but are located on the kenai.com developer
collaboration website. We recommend you access the instructions on how to run the
samples located on kenai.com from within the NetBeans IDE as well, although they
are also available through your browser on the kenai.com website at
http://kenai.com/projects/javacard/pages/Home. The set of samples on
kenai.com includes a suite of reference applications that demonstrate an entire
application and can be used as a template to illustrate the use of advanced features,
such as SIO, event handling, and communication between applications on the card.

Refer to the Runtime Environment Specification, Java Card Platform, Version 3.0.1,
Connected Edition and Programming Notes, Java Card 3 Platform, Connected Edition for
additional information about designing and writing Java Card 3 applications.

This chapter describes the three samples included in this development kit as they are
running in the NetBeans IDE:

■ Running the Samples

■ Using the Web Application Sample

■ Using the Classic Applet Sample

■ Using the Extended Applet Sample
27

http://kenai.com/projects/javacard/pages/Home

Running the Samples
All samples must be run from within the NetBeans IDE. They cannot be run from
the command line in this release of the development kit. Therefore, this section does
not describe how to run the samples, but rather how you interact with them as they
are running. For detailed instructions on how to run the samples, see the online help
provided with the NetBeans IDE under Help > Help Contents.

Note that two sets of samples are available for the Java Card 3 platform, the three
basic samples included in this development kit and the full set of samples that can
be found at http://kenai.com/projects/javacard/pages/Home, where how
to run them and their use is described.

▼ Running the Samples from the NetBeans IDE
All Java Card 3 platform samples run only from within the NetBeans IDE, Version
6.8 or higher. However, there are two sets of samples available: the three basic
samples included in this development kit and the full set of samples on kenai.com,
each of which can easily be made into a project from within the NetBeans IDE.

1. If you have not done so, install and set up the NetBeans IDE.

For the details, see “Install and Setup the NetBeans IDE” on page 20.

2. If you want to use the samples in this development kit, run the NetBeans IDE,
navigate to the Java Card platform project and then to the appropriate sample
node.

The three basic samples are listed in the NetBeans IDE but reside in the
development kit in subdirectories of JC_CONNECTED_HOME\samples. The
online help provided in the NetBeans IDE under Help > Help Contents
contains information on how to run these three samples.

3. If you want to run the samples that reside on kenai.com, from within the
NetBeans IDE go to Team > Kenai > Get Sources from Kenai.

In the Get Sources from Kenai dialog box, click the Browse button beside
the Kenai Repository field and use search to locate the project Java Card -
Everything You Need to Know. Information on how to run these samples is
automatically included with each kenai project you create.

4. In the NetBeans IDE, open the sample project.

The NetBeans IDE loads the built application, and, if used, opens the browser to
access the application.
28 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

http://kenai.com/projects/javacard/pages/Home

5. When they are run, some sample applications open your default browser.

Your browser displays a web page that serves as the primary user interface to
some of the samples. Interactions with the three basic samples in the development
kit are described in the following sections.

▼ Accepting an Untrusted Certificate
When running a sample that uses HTTPS to establish a secure connection with a web
server, the Firefox browser might report that the sample uses an untrusted certificate
and not allow you to accept the certificate required to open the web page. If
cjcre.exe is still running, you can use the browser’s Certificate Manager to add an
exception for the server certificate by performing the following procedure.

1. In the Firefox browser menu bar select the Tools > Options menu item.

2. In the Options dialog box, select the Advanced icon in the tool bar.

3. Under the Encryption tab, click View Certificates to open the Certificate
Manager.

4. Select the Servers tab and click Add Exception.

5. In the Add Security Exception dialog box, enter the URL of the local host
that is displayed in the web browser.

For example, https://localhost:50245

6. Click Get Certificate and accept the certificate loaded by the Certificate
Manager.

In some cases, you may need to restart the browser for the certificate to be
accepted.

Using the Web Application Sample
The simplest web application sample, HelloWorld, is included in this development
kit. Another version of it is located on the kenai.com website. Both versions are
accessible through the NetBeans IDE.

This application demonstrates the basic structure of a Java Card 3 platform
application that developers can use to develop, deploy, create, execute, delete, and
unload a stand-alone module. It is a minimal application utilizing the simplest
source code and meta-files.
Chapter 4 Using the Samples 29

Using the HelloWorld Sample
This sample contains a web application that demonstrates using a basic web form to
collect and display information provided by the user. The project is located in the
folder JC_CONNECTED_HOME\samples\web\HelloWorld.

Using this sample consists of starting the HelloWorld application, entering a name
in the web page, clicking the Say Hello button on the page, and then receiving the
the greeting.

▼ Run HelloWorld

1. Start the HelloWorld application by going to the HelloWorld project node in
the NetBeans IDE.

If you need help with running this sample, go to online help within the NetBeans
IDE under Help > Help Contents. When running, a browser displays the
following page:

2. Enter a name in the Enter Name field and click the Say Hello button.

The browser displays a greeting similar to the following illustration.
30 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Using the Classic Applet Sample
This development kit includes the basic classic applet sample, HelloWorld, in the
folder JC_CONNECTED_HOME\samples\classic_applets. Another version of
it is located on the kenai.com website. Both versions are accessible through the
NetBeans IDE.

This sample illustrates basic use of the Java Card API to run a classic applet
application and demonstrates the basic structure of a classic applet that developers
can use to develop, deploy, create, execute, delete, and unload classic applets. This
sample is a minimal classic applet utilizing the simplest source code and meta-files.

This sample contains one project that demonstrates the function of a classic applet.
The project is located in the folder JC_CONNECTED_HOME\samples\
classic_applets\HelloWorld. Information on how to run this sample is located
in the online help for the Java Card 3 platform plugin in the NetBeans IDE under
Help > Help Contents.

Using this sample consists of starting the HelloWorld classic applet. When running,
the project installs the classic applet, processes an incoming APDU, and responds
with a greeting.

Using the Extended Applet Sample
This development kit includes the basic extended applet sample, HelloWorld, in
JC_CONNECTED_HOME\samples\extended_applets. Another version of it is
located on the kenai.com website. Both versions are accessible through the NetBeans
IDE.

This sample illustrates basic use of the Java Card API to create an extended applet
application and demonstrates the basic structure of an extended applet that
developers can use to develop, deploy, create, execute, delete, and unload extended
applets. This sample is a minimal extended applet utilizing the simplest source code
and meta-files.

This sample contains one project that demonstrates the function of an extended
applet. The project is located in the folder JC_CONNECTED_HOME\samples\
extended_applets\HelloWorld. Information on how to run this sample is
located in the online help for the Java Card 3 platform plugin in the NetBeans IDE
under Help > Help Contents.
Chapter 4 Using the Samples 31

Using this sample consists of starting the HelloWorld extended applet. When
running, the project installs the extended applet, processes an incoming APDU, and
responds with a greeting.
32 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 5

Starting the Java Card Runtime
Environment

The Connected Edition reference implementation is written in the Java and C
programming languages and is called the C Java Card Runtime Environment (Java
Card runtime environment). It is a simulator that can be built with a pre-built ROM
mask, much as a Java Card technology-based implementation. It has the ability to
simulate persistent memory (EEPROM) as well as to save and restore the contents of
EEPROM to and from disk files. The Java Card runtime environment performs I/O
via a socket interface, simulating the interaction with a card reader or host machine
implementing HTTP(S) communication with the card reader or host machine.

The Java Card runtime environment is supplied by the development kit as the pre-
built executable, cjcre.exe. The executable, cjcre.exe, is run from the command
line.

This chapter includes the following sections:

■ Starting cjcre.exe from the Command Line

■ Java Card Runtime Environment Configuration Files

■ Adding Proprietary Packages

Starting cjcre.exe from the Command
Line
The Java Card runtime environment can be run from the command line by using the
following command and options:

JC_CONNECTED_HOME\bin\cjcre.exe [options]
33

cjcre.exe Command Line Options
The following command line options are listed in order of their expected frequency
of use (most frequently used to less frequently used):

■ -config config file

Sets a new configuration file. The default is lib\config.properties.

■ -contactedport portnumber

Sets the port used to simulate the contacted interface for APDU. The default value
for -contactedport is 9025.

■ -contactedprotocol protocol

Sets the APDU protocol on this port, either T=0 or T=1. The default value for the
-contactedprotocol is T=1.

■ -contactlessport port-number

Port number used to simulate contactless interface. Default is 9026. The protocol,
T=CL, cannot be changed.

■ -corsize size

Sets the Clear On Reset (COR) memory size in which a portion of RAM is
dedicated to COR memory. The range of values that the Java Card runtime
environment can accept from the command line is 2K to 8K. The default value is
4K. size is set as a value in bytes (2345) or kilobytes (2K).

■ -Dname=value

Supplies a system property (such as -Dmyproperty=myvalue). System properties set
in this manner can be retrieved using the API’s
System.getProperty("myproperty") method. A maximum of 50 -D
properties can be passed in the command line.

■ -debug <yes|true|no|false>

Runs cjcre in debug mode if you specify yes or true. Otherwise, the default is
no and cjcre will not be run in debug mode. The values yes and true are
equivalent. The values no and false are equivalent.

■ -debugport portnumber

Sets the debug port where the Debug proxy communicates. Valid only when -
debug is set to yes. The default value for -debugport is 7019.

■ -e2pfile filename

Supplies the file name in which the EEPROM image is stored.

■ -e2psize size

Configures the amount of EEPROM used. size is set as a value in bytes (2345),
kilobytes (32K), or megabytes (4M). The specified size is rounded up to a multiple
of 4. For example, a size specified at 253, is rounded up to 256.
34 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

The range of values that the Java Card runtime environment can accept from the
command line is 1M to 32M. The default value used is 4M. The value required to
run the samples is between 2M and 32M.

■ -enableassertions

Enables Java code assertions (the assert keyword in Java code).

■ -exactlogger

Displays only the log messages that match the level set by the -loggerlevel
option.

■ -help [copyright]

Prints help and copyright messages.

■ -httpport portnumber

Sets the HTTP port number on which cjcre will be listening. The default value
for -httpport is 8019.

■ -loggerlevel <none|fatal|error|warn|info|verbose|debug|all>

Sets the type of log messages output. All log messages up to the specified level
are displayed.

■ -ramsize size

Configures the amount of RAM used. size is set as a value in bytes (2345),
kilobytes (32K), or megabytes (4M).

The range of values that the Java Card runtime environment can accept from the
command line is 64K to 32M. The default value used is 1M. The value required to
run the samples is between 128K and 32M.

■ -resume

Restores the VM state from the previously saved EEPROM image and continues
VM execution. When -resume is specified, other options such as -ramsize and
-e2psize are ignored and the corresponding values are obtained from the
EEPROM image. However, the debug related options (-debug, -debugport, and
-suspend) must be specified along with -resume to resume the VM in debug
mode. The range is 256 bytes to 8K.

■ -suspend <yes|true|no|false>

Suspends the threads at cjcre startup if set to yes or true. The default is yes.
The values yes and true are equivalent. However, yes and true are valid only
when -debug is also set to yes or true. The values no and false are
equivalent.

■ -version

Displays version information.

■ -Xname=value
Chapter 5 Starting the Java Card Runtime Environment 35

Sets a single configuration property such as:
-Xmyproperty=myvalue

System properties set in this manner can be retrieved using the API’s
System.getProperty("myproperty") method. A maximum of 50 -D
properties can be passed in the command line. These are visible using
JCRuntime.getConfigProperty().

Java Card Runtime Environment
Configuration Files
If you installed the development kit source bundle, the configuration files for the
Java Card runtime environment (config.properties and system.config) files
are located in the lib folder. These configuration files contain internal configuration
information that must not be changed unless specified. Java Card runtime
environment execution requires properly configured config.properties and
system.config files. Incorrect changes to these files will prevent execution of the
Java Card runtime environment. See Chapter 12 for details on configuring the Java
Card runtime environment.

If you installed the development kit binary bundle, you cannot change the
configuration files for the Java Card runtime environment.

Adding Proprietary Packages
If you installed the development kit source bundle, you can add proprietary
packages to the ROM mask for the Java Card runtime environment by building a
custom cjcre.exe. See Chapter 13 for additional information and procedures.

If you installed the development kit binary bundle, you cannot add proprietary
packages.
36 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 6

Compiling Source Code

This chapter describes the use of the Java Card 3 platform Compiler tool
(javacardc.bat) in compiling the source code of applications outside of an IDE.

See Chapter 3 to better understand the role and relationship between the Compiler
tool and the other development kit tools used in developing applications for the Java
Card 3 platform.

Running the Compiler Tool from the
Command Line
The Compiler tool provides a wrapper for javac (the JDK compiler) and includes an
annotation processor for the Java Card 3 platform to check for unsupported
language features, such as the use of float and double.

Compiler Tool Options
In addition to Java Card 3 platform specific options, all standard javac options for
JDK 1.6 can be used:

TABLE 6-1 Compiler Tool Options

Option Description

-g Generate all debugging info

-g:none Generate no debugging info

-g:{lines,vars,source} Generate only some debugging info
37

Format
The following is an example of the Compiler tool command format:

-nowarn Generate no warnings

-verbose Output messages about what the compiler is doing

-deprecation Output source locations where deprecated APIs are used

-classpath path Specify where to find user class files and annotation
processors

-cp path Specify where to find user class files and annotation
processors.

-sourcepath path Specify where to find input source files.

-bootclasspath path Override location of bootstrap class files.

-extdirs dirs Override location of installed extensions.

-endorseddirs dirs Override location of endorsed standards path.

-proc:{none,only} Control whether annotation processing and/or
compilation is done.

-processor
class1[,class2,class3...]

Names of the annotation processors to run; bypasses
default discovery process.

-processorpath path Specify where to find annotation processors.

-d directory Specify where to place generated class files.

-s directory Specify where to place generated source files.

-implicit:{none,class} Specify whether or not to generate class files for implicitly
referenced files.

-encoding encoding Specify character encoding used by source files.

-source release Provide source compatibility with specified release.

-target release Generate class files for specific VM version.

-version Version information.

-help Print a synopsis of standard options.

-Akey[=value] Options to pass to annotation processors.

-X Print a synopsis of nonstandard options.

-Jflag Pass flag directly to the runtime system.

TABLE 6-1 Compiler Tool Options (Continued)

Option Description
38 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

javacardc.bat [options] [sourcefiles] [@list_files]

In the format example:

■ options - standard javac options,

■ sourcefiles - .java files to be compiled

■ @list_files - plain text file containing a list of all java files that need to be compiled

Examples
A .java file named UsesFloat.java contains the following source:

public class UsesFloat {

 float f = 0;

}

It uses float, which is not supported by the Java Card 3 platform. Compiling this
file with standard javac generates a class file without any errors. However,
javacardc.bat fails the compilation with an error such as the following:

C:\JCDK3.0.2_ConnectedEdition\bin>javacardc.bat UsesFloat.java

Java Card 3.0.2 Compiler

UsesFloat.java:2: float keyword used

 float f = 0;

 ^

1 error

The bold text in the example output indicates the error message text.
Chapter 6 Compiling Source Code 39

40 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 7

Creating and Validating Application
Modules

This chapter describes creating and validating a Java Card technology-based
application module with the Packager tool (Packager). See Chapter 3 to better
understand the role and relationship between the Packager and the other
development kit tools used in developing applications for the Java Card 3 platform.

This chapter contains the following sections:

■ Packager Operation

■ Running the Packager From the Command Line

Packager Operation
When creating an application module, the Packager takes a specified folder
containing the files for the application module, validates the input files and creates
the application module archive file. If a web application contains JAR files in the lib
directory, the Packager creates a corresponding library module in the application
module.

Each application module can have a descriptor as a part of the MANIFEST.MF file
that specifies application module declarative items. In cases where an application
module has a descriptor, the descriptor information must be validated and
preserved.

Options
The following are options of the Packager:
41

■ Modules can be passed to the Packager as paths to directories containing the
corresponding structure.

■ Manifest files with information contained in an input module folder are preserved
without change.

Basic Packaging Sequence
The Packager creates an application module JAR file from input by performing the
following actions:

1. Input files are extracted into a temp folder under a folder named either with the
input file name or a name specified as a command line parameter.

2. Application module file types are checked and the application module type is
determined.

3. A type entry is added to the application module.

4. The application module is placed under the temp folder.

If an optional keystore file is specified in the command line parameter, verified
information from it is added to the resulting application module.

5. The entire contents are grouped together to create the final application module
JAR file.

Use Cases
TABLE 7-1 provides a description of the possible Packager input files and
corresponding output conditions.

TABLE 7-1 Packager Tool Input Files and Expected Output

Input Expected Output

A valid JAR file A valid application module JAR file

A malformated JAR file Packager warns the user and exits

Files of the same type A valid application module JAR file

Files of different types Packager warns the user and exits

Files of the same type but the type
contradicts the passed --type argument

Packager warns the user and exits
42 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Signing
The Packager can invoke the appropriate tools automatically to sign the application
module JAR file. See “create Subcommand” on page 43. For information about
creating a custom keystore that can be used to sign the application module JAR file,
see Chapter 12. External signing tools can also be used to sign the modules if the
user knows about those tools.

Use Cases
TABLE 7-2 provides a description of the possible Packager signing input and
corresponding output conditions

Running the Packager From the
Command Line
The command line interface for the Packager has the following syntax:

packager.bat subcommand [options] module-or-folder

The following is a list of the available subcommands for the Packager:

■ create Subcommand

■ validate Subcommand

■ copyright Subcommand

■ help Subcommand

create Subcommand
Creates the application module or library from a given module or folder.

TABLE 7-2 Packager Tool Signing Results

Input Expected Output

Valid keystore passed Application module JAR file is signed
successfully

Invalid keystore passed or invalid keystore
username or password

Packager warns the user and exits
Chapter 7 Creating and Validating Application Modules 43

create Subcommand Format
The following is an example of the create subcommand format:

packager.bat create --out file-name [--type file-type]
[--exportpath path-of-export-files] [--packageaid package-AID-for-classic-lib]
[--sign] --storepass keystore-password --passkey key-password
[--alias alias] [--compress] [--force] [--keepproxysource directory]
--useproxyclass classpath [--nowarn] module-file-or-folder

create Subcommand Options
TABLE 7-3 identifies the create subcommand options and provides their
descriptions.

TABLE 7-3 create Subcommand Options

Options Description

-A alias
or
--alias alias

Application signing attribute, where alias is the
name used to retrieve the key from the
keystore.

-c

or
--compress

Optional. If specified, the tool compresses the
output application module file with DEFLATE
algorithm. Otherwise creates an uncompressed
application module file.

-C command-options-file
or
--commandoptionsfile command-options-file

Optional. Specifies a file containing command
line options.

-e path-of-export-files
or

--exportpath path-of-export-files

Specifies the export files path. System’s
api_export files are implicitly loaded.

-f

or
--force

Optional. If specified, overwrite the output file.
See “--force Option Behavior” on page 45.

-k directory
or
--keepproxysource directory

Optional. Cannot be used with -
useproxyclass. Creates the proxy source files
and other stub files in the specified directory.
44 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

--force Option Behavior

The –-force option causes the output file to be overwritten.

-K keystore-file
or
--keystore keystore-file

Required only when the --sign option is
specified. Application signing attribute, where
keystore-file is the path and filename where the
private keys are stored. A key utility (such as
the JDK keytool) must be used to create and
maintain this file. See Chapter 12, “Creating a
Custom Keystore” on page 92.

-n

or

--nowarn

Suppresses the warning messages.

-o file-name
or
--out file-name

Specifies the output application module file
where file-name is the name of the output file.

-P key-password
or
--passkey key-password

Application signing attribute, where key-
password is the password for the private key.

-p package-AID-for-classic-lib
or

--packageaid package-AID-for-classic-lib

Specifies the package AID in
//AID/<RID>/<PIX> format for classic-
lib. Ignored if type is not classic-lib.

-s

or
--sign

Optional. Specifies that the Packager sign the
application.
If --sign is specified, --keystore keystore-
file,
--storepass keystore-password, --passkey key-
password, and --alias alias are required.

-S keystore-password
or
--storepass keystore-password

Application signing attribute, where keystore-
password is the password for the keystore.

-t file-type
or
--type file-type

Specifies the application module file type,
where file-type can be web, extended-applet,
classic-applet, classic-lib, or
extension-lib. The default value is web.

-u classpath
or
--useproxyclass classpath

Specifies the user-supplied proxy classes (these
proxy classes are not generated by Converter).

TABLE 7-3 create Subcommand Options (Continued)

Options Description
Chapter 7 Creating and Validating Application Modules 45

create Subcommand Examples
Two examples are provided, an example of the output option and an example of the
signing option.

Output Option Example

The following is an example of the create subcommand with the output option:

packager.bat create -o mymodule.jar -t web -c c:\mymodulefolder

In this command line example, the Packager performs the following tasks:

1. Extracts the contents of mymodulefolder directory to a temporary folder under
the subdirectory mymodulefolder.

2. Creates corresponding Web Application Module object and performs validation
and canonicalization of all xml descriptors.

3. Creates a META-INF/MANIFEST.MF file with required information (such as
application name).

4. Compresses the contents of the temporary folder to c:\temp\mymodule.jar.

Signing Option Example

The following is an example of the create subcommand with the output option:

packager.bat create -o mymodule.jar -t web --sign --keystore

c:\mykeystore\c.keystore --storepass demo --keypass mykey
--alias jckey -c c:\mymodulefolder

in addition to those tasks described in the previous example, the Packager in this
command line example signs the application using the keystore from c:\
mykeystore\c.keystore by performing the following:

■ Provides the password (demo) for the mykeystore keystore.

■ Provides the password (mykey) for the private c.keystore key.

■ Provides the name (jckey) required to retrieve the key from the keystore.

validate Subcommand

Validates an application module.
46 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

validate Subcommand Format
The following is the validate subcommand format:

packager.bat validate [-e | --exportpath path-of-export-files]
[--type type] [-x | --exportfile files-to-export]
module-file-name | module-directory-name

validate Subcommand Options
The validate subcommand has the options described in TABLE 7-4.

validate Subcommand Example
The following is an example of the validate subcommand:

packager.bat validate -t web myapp.war

In this command line example, the Packager performs the following tasks:

1. Extracts the contents of myapp.war application module to a temporary folder.

2. Validates the contents of the descriptors.

3. Validates that the classes specified in the descriptors actually exist in the
application module.

4. Cross validates the descriptors.

5. Displays results of validation.

TABLE 7-4 validate Subcommand Options

Options Description

-e

or
--exportpath path-of-export-files

Specifies the path to use for the files to be
exported.

module-file-name|module-directory-name Specifies the module’s file or directory.

-t

or
--type

Specifies the type of application module or group
to be validated. The type can be web, extended-
applet, classic-applet, classic-lib, or extension-lib.

-x

or
--exportfile files-to-export

Specifies the files to use for the export.
Chapter 7 Creating and Validating Application Modules 47

copyright Subcommand

Displays the detailed copyright notice.

copyright Subcommand Format
The following is an example of the copyright subcommand format:

packager.bat copyright

copyright Subcommand Options
There are no options for the copyright subcommand.

copyright Subcommand Example
The following is an example of the copyright subcommand:

packager.bat copyright

help Subcommand

Prints information about using subcommands.

help Subcommand Format
The following is an example of the help subcommand format:

packager.bat help subcommand

help Subcommand Options
While there are no options for the help subcommand, it does accept a topic attribute
consisting of a specific subcommand name for which detailed information is
displayed.
48 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

help Subcommand Example
The following is an example of the help subcommand:

packager.bat help validate

Use Cases
TABLE 7-5 provides use cases for the command line arguments and describes the
expected output for each.

TABLE 7-5 Use Cases for Command Line Arguments

Input Expected Output

Valid arguments are passed for all specified types
(web, extended-applet,
classic-applet, extension-lib, or
classic-lib), -o specified.

Valid application module of
corresponding type is created.

Valid arguments are passed for all specified types
(web, extended-applet,
classic-applet, extension-lib, or
classic-lib), -o not specified.

Packager performs xml validation. No
application module is created.

The same name is specified for several
application modules using the filename argument.

Error message and modules are renamed
automatically.

-f is specified, descriptors contain unsupported
tags.

Warns developer, cuts out unsupported
tags.

-s is specified, valid signing related arguments
passed.

Signs the resulting JAR file.
Chapter 7 Creating and Validating Application Modules 49

50 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 8

Loading and Managing
Applications

This chapter describes the use of the card installer in loading, creating, unloading,
and deleting applications on a card. The card installer consists of two components,
an on-card installer and an off-card Installer tool (Installer tool) provided by the
development kit. The two installers work in conjunction to provide card application
management functions.

See Chapter 3 to better understand the role and relationship between the Installer
tool and the other development kit tools used in developing and deploying
applications for the Java Card 3 platform.

This chapter consists of the following sections:

■ Description of the On-Card Installer

■ Description of the Installer Tool

■ Card Installer Use Case

Description of the On-Card Installer
The on-card installer is a ROMized servlet responsible for handling requests received
from the off-card installer, extracting the command and data, forwarding them to the
card manager. Upon the return of the card manager, the installer forms the response
to send back to the off-card installer.
51

On-card Installer Operation
The on-card installer provides the interface between the Installer tool and the card
manager and provides a request handling function for the card manager to perform
card management tasks. The on-card installer assumes the /cardmanager context to
represent the on-card card manager. All /cardmanager/command URIs (in which
command represents load, create, delete, unload, or list) are mapped to one context
/cardmanager assigned to the on-card installer.

The on-card installer parses and extracts the command, name, and data information
in the multi-part POST requests. The information is passed on by calling the
appropriate card manager’s API. The on-card installer and the filter are registered
and started with the web container at card initialization.

On-card Installer Functionality
The on-card installer provides the following functionality:

1. Handles requests received from the off-card installer.

These requests include the command for card application management and the
data (application module JAR file).

2. Extracts data (JAR file) contained in the HTTP request and saves it to an on-card
file.

3. Passes the load, create, delete, unload, or list command, parameters and
the location of the saved JAR file to the Card Manager.

4. Handles the return from the Card Manager.

5. Builds the response content and sending the response back to the off-card
installer.

6. Can be configured to require PIN authentication of the off-card installer via basic
HTTP authentication:

■ load, create, delete, or unload are protected with session-scoped
authentication.

■ list is protected with global card holder authentication.

■ load, create, delete, or unload require card holder authorization.
52 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Description of the Installer Tool
The Installer tool (off-card Installer) works on behalf of the on-card installer to
perform various card management tasks, such as deploying an application and
listing all applications. The communication between the Installer tool and on-card
installer is proprietary. For the RI, HTTP POST is used as the communication
protocol.

The following functions are performed by the Installer tool:

■ Loads an application module onto the card.

■ Creates an instance of an application.

■ Deletes (deactivates) an instance of an application.

■ Completely removes a module or application from the card.

■ Displays information about loaded applications and instances.

Running the Installer Tool From the Command
Line
The Installer tool is a command-line tool, implemented using Java SE. The command
line interface for the Installer tool has the following syntax:

installer.bat subcommand [options] [arguments]

In the command line, the subcommand must be the first argument after the
installer.bat command. Options and arguments can be in any order.

In the command line, subcommands and options can be specified in either a short
form or a long form. The short form is a single character preceded by a hyphen (-).
The long form uses a meaningful name preceded by two hyphens (--). Each
subcommand can take one or more options or arguments that must follow the
subcommand but can be in any order. For example, -i instance-name or
--instance instance-name.

Arguments are command line arguments that are not bound to an option. For
example, an application or module file name used in the load command is an
argument.

The following subcommands are available for the installer.bat command:

■ load Subcommand

■ create Subcommand

■ delete Subcommand
Chapter 8 Loading and Managing Applications 53

■ unload Subcommand

■ list Subcommand

■ help Subcommand

load Subcommand
Causes the Installer tool to load a specified application module or library file. The
load subcommand can have one or more options and arguments.

load Subcommand Options

TABLE 8-1 lists and describes the available load subcommand options.

TABLE 8-1 load Options

Option Description

-c oncardinstaller-url
or
--cardmanager oncardinstaller-url

Specifies the location of the on-card installer
where oncardinstaller-url represents the
complete URL of the on-card installer.

-C command-options-file
or
--commandoptionsfile command-options-file

Optional. Specifies a file containing
command line options.

-n module-or-library-name
or
--name module-or-library-name

Specifies the name of the module or library
on the card, where module-or-library-name
represents the module or library name.

-p password
or
--password password

Optional. Used when authentication is
required. Specifies the password for the user
set by the --user or -u subcommand,
where password represents the required user
password.
54 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

load Subcommand Arguments

Command line arguments available for the load subcommand are the module or
application group file name.

load Subcommand Format

The following is an example of the load subcommand format:

installer.bat load -c oncardinstaller-url -s signature-file -t file-type \
-n module-or-library-name [-u user-id -p password] \
application-module (or library-file)

load Subcommand Example

In the following example, the Installer loads the file Calculator.war with the
name calc.

-s signature-file
or
--signature signature-file

Specifies the name of the properties file that
contains the BASE64 encoded certificate and
signature, where signature-file represents the
file name.
This file is a simple properties file with
properties:
signature=base64-encoded-signature
certificate=certificate-to-validate-the
module-and-digest

-t file-type
or
--type file-type

Specifies the type of file being loaded, where
file-type represents one of the following
values:
• web

• classic-applet

• extended-applet

• classic-lib

• extension-lib

-u user-id
or
--user user-id

Optional. Used when authentication is
required to access the card manager.
Specifies the user name, where user-id
represents the user name.

TABLE 8-1 load Options

Option Description
Chapter 8 Loading and Managing Applications 55

installer.bat load -c http://localhost:8019/cardmanager \

-s mysig.properties -n calc -t web Calculator.war

create Subcommand
Causes the Installer to create an instance of an application from a specified group
with a specified context. The create subcommand can have one or more options
but has no arguments.

create Subcommand Options

TABLE 8-2 lists and describes the available create subcommand options.

TABLE 8-2 create Options

Option Description

-a applet-name-or-id
(or)
--applet applet-name-or-id

Specifies the name of the applet loaded
by load command, where applet-name-
or-id represents the applet name.

-c oncardinstaller-url
or
--cardmanager oncardinstaller-url

Specifies the location of the on-card
installer, where oncardinstaller-url
represents the complete URL.

-C command-options-file
or
--commandoptionsfile command-options-file

Optional. Specifies a file containing
command line options.

-d install-parameters
or
--data install-parameters

Optional. Install parameters (printable
hex string) that will be passed to the
install method of a classic or extended
applet.

-i name
or
--instance name

Specifies the name or ID of the
instance, where name represents the
name or ID. For web applications, a
context name used to create the web
application. If none is specified, then
the default Web-Context-Path from
JCRD is used.
56 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

create Subcommand Arguments

There are no command line arguments for the create subcommand.

create Subcommand Format

The following is an example of the create subcommand format:

installer.bat create -c oncardinstaller-url -n module-or-library-name \
[-a applet-name-or-id] [-d install-parameters] [-i name] \
[-u user-id -p password]

create Command Example 1

The following example assumes that a module was previously loaded and named
calc. See “load Subcommand Example” on page 55. The Web-Context-Path in RD
is /Calculator.

This example of the create command registers the web application with a web
container using /Calculator as the context. Users access this web application by
using http://cardip:cardport/Calculator.

installer.bat create -c http://localhost:8019/cardmanager -n calc

-n module-or-library-name
or
--name module-or-library-name

Specifies the name of the module or
library loaded by load command,
where module-or-library-name
represents the module or library name.

-p password
or
--password password

Optional. Used when authentication is
required. Sets the password for the
user specified by the --user or -u
subcommand.

-u user-id
or
--user user-id

Optional. If authentication is required
to access the card manager, specifies
the authorized user, where user-id
represents the required user name.

TABLE 8-2 create Options (Continued)

Option Description
Chapter 8 Loading and Managing Applications 57

create Command Example 2

Similar to Command Example 1, the following example assumes that a module was
previously loaded and named calc, with the exception that instead of using the
default /Calculator, the application is registered with a web-container using the
context /Mycalc.

installer.bat create -c http://localhost:8019/cardmanager -n calc \

-i /MyCalc

create Command Example 3

Similar to Command Example 2, the following example assumes that a module was
previously loaded and named calc, with the exception that the application is
registered as an applet instead of a web-container and has an instance ID of /01.

installer.bat create -c http://localhost:8019/cardmanager -n calc \

-a //aid/A000000062/03010C0201 -d a000f0

delete Subcommand
Causes the installer to delete an instance that was created by the create
subcommand. The delete subcommand can have one or more options but no
arguments.
58 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

delete Subcommand Options

TABLE 8-3 lists and describes the available delete subcommand options.

delete Subcommand Arguments

There are no command line arguments for the delete subcommand.

delete Subcommand Format

The following is an example of the delete subcommand format:

installer.bat delete -c oncardinstaller-url -i name [-u user-id -p password]

TABLE 8-3 delete Options

Option Description

-c oncardinstaller-url
or
--cardmanager oncardinstaller-url

Specifies the location of the on-card
installer, where oncardinstaller-url
represents the complete URL.

-C command-options-file
or
--commandoptionsfile command-options-file

Optional. Specifies a file containing
command line options.

-i name
or
--instance name
or
-i name;name1;name2; ...
or
--instance name;name1;name2; ...

Specifies the instance of the
application or multiple instances of
applications to be deleted, where name
represents the instance name of the
application.

-p password
or
--password password

Optional. Used when authentication is
required. Sets the password for the
user specified by the --user or -u
subcommand.

-u user-id
or
--user user-id

Optional. If authentication is required
to access the card manager, specifies
the authorized user, where user-id
represents the required user name.
Chapter 8 Loading and Managing Applications 59

delete Command Example

In the following example, the installer deletes the instance /MyCalc.

installer.bat delete -c http://localhost:8019/cardmanager -i /MyCalc

unload Subcommand
Causes the installer to unload (remove) the specified module or application from the
card including all instances created by the create command. The delete
subcommand can have one or more options but no arguments.

unload Subcommand Options

TABLE 8-4 lists and describes the available unload subcommand options.

TABLE 8-4 unload Options

Option Description

-c oncardinstaller-url
or
--cardmanager oncardinstaller-url

Specifies the location of the on-card
installer, where oncardinstaller-url
represents the complete URL.

-C command-options-file
or
--commandoptionsfile command-options-file

Optional. Specifies a file containing
command line options.

-n module-or-library-name
or
--name module-or-library-name

Specifies the name of the module or
library loaded by load command,
where module-name represents the
module or library name.

-f

or
--force

Optional. Forces an attempt to delete
any instances before unloading.

-p password
or
--password password

Optional. Used when authentication is
required. Sets the password for the
user specified by the --user or -u
subcommand.

-u user-id
or
--user user-id

Optional. If authentication is required
to access the card manager, specifies
the authorized user, where user-id
represents the required user name.
60 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

unload Subcommand Arguments

There are no command line arguments for the unload subcommand.

unload Subcommand Format

The following is an example of the unload subcommand format:

installer.bat unload -c oncardinstaller-url -n module-or-library-name [-f] \
[-u user-id -p password]

unload Command Example

In the following example, the installer completely removes the calc module and all
of its instances.

installer.bat unload -c http://localhost:8019/cardmanager -n calc

list Subcommand
Causes the installer to display summary or detailed information about loaded
application modules, instances, and libraries.

list Subcommand Options

TABLE 8-5 lists and describes the available list subcommand options.

TABLE 8-5 list Options

Option Description

-c oncardinstaller-url
or
--cardmanager oncardinstaller-url

Specifies the location of the on-card
installer, where oncardinstaller-url
represents the complete URL.

-C command-options-file
or
--commandoptionsfile command-options-file

Optional. Specifies a file containing
command line options.
Chapter 8 Loading and Managing Applications 61

list Subcommand Arguments

There are no command line arguments for the list subcommand.

list Subcommand Format

The following is an example of the list subcommand format:

installer.bat list -c oncardinstaller-url [-d] [-u user-id -p password]

list Command Example 1

In the following example, the installer displays summary information about
modules, applications, and libraries.

installer.bat list -c http://localhost:8019/cardmanager

list Command Example 2

In the following example, the installer displays detailed information about modules,
applications, and libraries.

installer.bat list -d -c http://localhost:8019/cardmanager

-d

or
--detailed

Optional. Displays complete details of
the application-modules, instances,
and libraries.

-p password
or
--password password

Optional. Used when authentication is
required. Sets the password for the
user specified by the --user or -u
subcommand.

-u user-id
or
--user user-id

Optional. If authentication is required
to access the card manager, specifies
the authorized user, where user-id
represents the required user name.

TABLE 8-5 list Options (Continued)

Option Description
62 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

help Subcommand
Causes the installer to display summary or detailed information about one or more
installer subcommands.

help Subcommand Options

There are no command line options for the help subcommand.

help Subcommand Arguments

Command line arguments for the help command are optional and consist of the
name of the subcommand for which detailed help is requested.

help Subcommand Format

The following is an example of the list subcommand format:

installer.bat help [subcommand]

help Command Example 1

In the following example, the installer displays summary help about all of its
subcommands.

installer.bat help

help Command Example 2

In the following example, the installer displays detailed help about the load
subcommand.

installer.bat help load

Card Installer Use Case
The following use case, Load an Application, illustrates a common use of the card
installer.
Chapter 8 Loading and Managing Applications 63

Load an Application
This use case loads an application module to the card.

Pre-Conditions
The following preconditions must be satisfied for this use case:

■ A valid module file available (in this use case, mymodule.war).

■ A signature details file containing Base64 encoded signature and certificate is
available (in this use case, sig.properties).

■ The on-card installer application must be accessible to the off-card installer client
via an http connection (in this use case,
http://localhost:8019/cardmanager).

Post-Conditions
The module is loaded and ready to be created.

Sequence of Events
1. The user executes the following command:

installer.bat load -c http://localhost:8019/cardmanager \

-s sig.properties -n app1 -t web mymodule.war

2. The off-card installer connects to the on-card installer servlet and POSTs the
required information.

3. A message is displayed on the console with the success information.
64 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 9

Backwards Compatibility for Classic
Applets

This chapter describes how to generate application modules for classic applets by
using the Normalizer tool (Normalizer). These application modules contain classic
CAP files and provide backwards compatibility for the Java Card 3 platform by
enabling classic applets to run on Connected Edition and Classic Edition cards.

This chapter contains the following sections:

■ Generating Application Modules From Classic Applets

■ Converting Class Files to CAP Files

Generating Application Modules From
Classic Applets
Developers use the Normalizer to generate application modules for applets created
for previous version of the Java Card platform. The Normalizer can generate
application module from existing modules when there is no source is available.
These application modules contain CAP files and are downloadable on both the Java
Card 3 platform Classic Edition and Connected Edition cards.

The output from the tool is a classic module that contains the class files, the CAP
components of the CAP file, SIO proxies for classic SIOs (if used), and associated
classic application descriptors. The input to the tool must be classic CAP files and
associated EXP files. If the input files are not classic CAP files, the normalization will
fail. See Appendix A for a description of the application module and library formats
supported by the Java Card 3 platform card manager. FIGURE 9-1 illustrates the
process of generating application modules from classic applets and deploying them
on both the Java Card 3 platform Classic Edition and Connected Edition cards.
65

FIGURE 9-1 Generating Application Modules From Classic Applets

Running the Normalizer From the Command Line
The command line interface for the Normalizer has the following syntax:

normalizer.bat subcommand [options]

The following is a list of the subcommands for the Normalizer:

■ normalize - Creates the package class files

■ copyright - Displays detailed copyright notice

■ help - Displays information about the Normalizer command

normalize Subcommand
Use the normalize subcommand and its options to create the package class files.
Options are used with the normalize subcommand to specify input files, export
paths, export file names, and output directories.

Export
Files

CAP
JAR
File

Application
Module
JAR File

Application
Module
JAR File

Java Card
Platform 3.0
Connected

Java Card
Platform 3.0

Classic

Java
Source
Files

Off-the-shelf
IDE

Normalization Packaging

DeploymentConversion to
CAP
66 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

normalize Subcommand Options

TABLE 9-1 identifies the normalize subcommand options and provides their
descriptions.

normalize Subcommand Format

The following is the format of the normalize subcommand. Options in the
subcommand are used in the sequence that are presented in TABLE 9-1. In this format
example, an input file and an output directory are specified as options:

normalizer.bat normalize --in file --exportpath path --out directory

TABLE 9-1 normalize Subcommand Options

Option Description

-C command-options-file
or
--commandoptionsfile command-options-file

Optional. Specifies a file containing
command line options.

-i file
or
--in file

Specifies the input CAP file name.

-k

or
--keepall

Specifies the directory to keep class files,
proxy classes, and CAP components. The
output format is as follows:
<directory>

/ <application classes>
/ proxy/ [proxy classes]

/ javacard/ *.cap

-p path
or
--exportpath path

Specifies the path of the export files used by
the tool.

-f file
or
--exportfile file

Specifies the name of the export file.

-o directory
or
--out directory

(Optional) This the default setting and does
not have to be explicitly set. Specifies the
output directory that contains the export file.
Chapter 9 Backwards Compatibility for Classic Applets 67

normalize Subcommand Example

The following is an example of the normalize subcommand in which an input file
(myCAP.cap) is specified as an option:

normalizer.bat normalize -i myCAP.cap

copyright Subcommand
The copyright subcommand displays the detailed copyright notice. There are no
options associated with this subcommand.

help Subcommand
The help subcommand displays information about the Normalizer command.
Options are used with the help subcommand to specify the information that is
displayed about each sub-command.

Normalizer Summary Help

The following command displays summary help about the Normalizer:

normalizer.bat help

normalize Subcommand Help

The following command displays help about the normalize subcommand:

normalizer.bat help normalize

Converting Class Files to CAP Files
This section describes using the Converter tool (Converter) provided for the
Connected Edition as a stand-alone tool. When run as a stand-alone tool, the
Converter can take class files from javac and convert them into CAP files that can
be loaded by the Connected Edition platform.
68 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Note – If you are developing a classic applet application you want to deploy using
the classic development kit, create your CAP file as described in this chapter. Then
you can take your CAP file to the classic development kit to deploy it on the classic
Java Card VM.

The Converter is part of the Developer Kit tool chain and is also used by the
Normalizer to create application modules for classic applets. The Normalizer can
generate application module from existing modules when there is no source is
available. See Chapter 9 for a description of using the Normalizer to create
application modules from classic applets.

The CAP file is a JAR-format file which contains the executable binary
representation of the classes in a Java package. The CAP file also contains a manifest
file that provides human-readable information regarding the package that the CAP
file represents. For more information on the CAP file and its format, see Chapter 6 of
the Virtual Machine Specification, Java Card Platform, Version 3.0.1, Connected Edition.

When running the Converter as a stand-alone tool, developers can use the command
line options described in TABLE 9-2 to:

■ Specify the root directory where the Converter looks for classes.

■ Specify the root directories where the Converter looks for export files.

■ Use the token mapping from a pre-defined export file of the package being
converted. The Converter will look for the export file in the export path.

■ Set the applet AID and the class that defines the install method for the applet.

■ Specify the root directories where the Converter outputs files.

■ Specify that the Converter output one or more of the following:

■ CAP file

■ JCA file

■ EXP export file

■ Identify that the package is used as a mask.

When a package is used as a mask, restrictions on native methods are relaxed.

■ Specify support for the 32-bit integer type.

■ Enable generation of debugging information.

■ Turn off verification (the default of input and output files. Verification is default.

Conversion Process Sequence
When the Converter runs, it performs the conversion process in the following
sequence:
Chapter 9 Backwards Compatibility for Classic Applets 69

1. Loads the package.

If the exportmap option is set, the converter loads the package from the export
path (see “Specifying an Export Map” on page 71). Loads the class files of the Java
package and creates a data structure to represent the package.

2. Subset checking.

Checks for unsupported Java features in class files.

3. Conversion.

Checks for consistency between the applet AIDs and the imported package AIDs.

4. Reference Checking.

Checks that all references are valid, internal referenced items are defined in the
package, import items are declared in the export files (see “Loading Export Files”
on page 71).

5. The Converter creates the JcImportTokenTable to store tokens for import
items (class, methods, and fields).

If the Converter only generates an export file, it does not check private APIs and
byte code. Also included is a second round of subset checking that operations do
not exceed the limitations set by the Virtual Machine Specification, Java Card
Platform, Version 3.0.1, Connected Edition.

6. Optimization.

Optimizes the bytecode.

7. Generates output.

Builds and outputs the EXP export file and the JCA file, checks the package
version in the export file of the current package against the package version
specified in the command line. If the -exportmap option is used in the command
line, the export file specified in the command line must represent the same
version as that of the package. The converter does not support upgrading the
export file version.

8. Before writing the export and JCA files, the Converter determines the output
file path.

The Converter assumes the output files are written into the director: root_dir\
package_dir\javacard. By default the root_dir is the classroot directory specified
by -classdir option. Users can specify a different root_dir by using -d option.
70 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Specifying an Export Map
You can request that the Converter convert a package using the tokens in a pre-
defined export file of the package being converted. Use the -exportmap command
option to do this. The Converter loads the pre-defined export file in the same way
that it loads other export files.

There are two distinct cases when using the -exportmap flag is desired:

■ When the minor version of the package is the same as the version given in the
export file (this case is called package reimplementation).

During package reimplementation, the API of the package (exportable classes,
interfaces, fields and methods) must remain exactly the same.

■ When the minor version increases (package upgrading).

During a package upgrade, changes that do not break binary compatibility with
preexisting packages are allowed (See “Binary Compatibility” in Section 4.4 of the
Virtual Machine Specification, Java Card Platform, Version 3.0.1, Connected Edition).

For example, you must use the -exportmap option to preserve binary compatibility
with already existing packages that use the package when reimplementing a method
(package reimplementation) in an existing package or upgrading an existing package
by adding new API elements (new exportable classes or new public or protected
methods or fields to already existing exportable classes).

Loading Export Files
A Java Card technology-based export file (export file) contains the public API
linking information of classes in an entire package. The Unicode string names of
classes, methods and fields are assigned unique numeric tokens.

Export files are not used directly on a device that implements a Java Card virtual
machine. However, the information in an export file is critical to the operation of the
virtual machine on a device. An export file is produced by the Converter when a
package is converted. This package's export file can be used later to convert another
package that imports classes from the first package. Information in the export file is
included in the CAP file of the second package, then is used on the device to link the
contents of the second package to items imported from the first package.

During the conversion, when the code in the currently-converted package references
a different package, the Converter loads the export file of the different package. An
applet package is linked with the java.lang, the javacard.framework and
javacard.security packages via their export files.
Chapter 9 Backwards Compatibility for Classic Applets 71

You can use the -exportpath command option to specify the locations of export
files. The path consists of a list of root directories in which the Converter looks for
export files. Export files must be named as the last portion of the package name
followed by the extension .exp. Export files are located in a subdirectory called
javacard, following the Java Card platform’s directory naming convention.

For example, to load the export file of the package java.lang, if you specify
-exportpath as c:\myexportfiles, the Converter searches the directory
JCDK3.0.2_ConnectedEdition\api_export_files\java\lang\javacard
for the export file lang.exp.

Creating a debug.msk Output File
If you select the -mask and -debug options, the file debug.msk is created in the
same directory as the other output files. (Refer to “converter Command Options”
on page 74.)

Verification of Input and Output Files
By default, the converter invokes the off-card verifier for every input EXP file and on
the output CAP and EXP files.

■ If any of the input EXP files do not pass verification, then no output files are
created.

■ If the output CAP or EXP files do not pass verification, then the output EXP and
CAP files are deleted.

If you want to bypass verification of your input and output files, use the -noverify
command line option. Note that if the converter finds any errors, output files will
not be produced.

File and Directory Naming Conventions
This section describes the naming conventions used for the input and output files of
the Converter, and gives the correct location for these files. With some exceptions,
the Converter follows the Java programming language naming conventions for
default directories for input and output files. These naming conventions are also in
accordance with the definitions in Section 4.1 of the Virtual Machine Specification, Java
Card Platform, Version 3.0.1, Connected Edition.
72 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Input File Naming Conventions
The files input to the Converter are Java class files named with the .class suffix.
Generally, there are several class files making up a package. All class files for a
package must be located in the same directory under the root directory, following
the Java programming language naming conventions. The root directory can be set
from the command line using the -classdir option. If this option is not specified,
the root directory defaults to be the directory from which the user invoked the
Converter.

For example, the following command line would be used to convert the package
java.lang, use the -classdir flag to specify the root directory as C:\mywrk:

converter -classdir C:\mywrk java.lang package_AID package_version

In the example, package_AID is the application ID of the package and package_version
is the user-defined version of the package. The Converter will look for all class files
in the java.lang package in the directory C:\mywrk\java\lang.

Output File Naming Conventions
The name of the CAP file, export (EXP) file, and the Java Card Assembly (JCA) file
must be the last portion of the package specification followed by the extensions
.cap, .exp, and .jca, respectively. By default, the files output from the Converter
are written to a directory called javacard, a subdirectory of the input package's
directory. In the previous example, the output files are written by default to the
directory C:\mywrk\java\lang\javacard.

The -d flag is used to specify a different root directory for output.

In the previous example, using the -d flag to specify the root directory for output to
be C:\myoutput would cause, the Converter to write the output files to the
directory C:\myoutput\java\lang\javacard.

When generating a CAP file, the Converter creates a JCA file in the output directory
as an intermediate result. If you do not want a JCA file to be produced, do not use
the option -out JCA.The Converter deletes the JCA file at the end of the conversion
when the option -out JCA is not used.

Running the Converter From the Command Line
The command line interface for running the Converter takes one of the following
forms:

converter.bat options package_name package_aid major_version.minor_version
Chapter 9 Backwards Compatibility for Classic Applets 73

or

converter.bat -config filename

Use the -config subcommand and the associated configuration file to provide the
options and parameters to the Converter. See “Using a Command Configuration
File” on page 76.

converter Command Options
Use the converter command options to specify input files, an export path, an
export map, names, and output directories.

TABLE 9-2 identifies the converter command options and provides their
description.

TABLE 9-2 converter Command Options

Option Description

-classdir root- directory-of-class-hierarchy Specifies the root directory where the Converter
looks for classes.

-keepproxysource directory Cannot be used with -useproxyclass.
Creates the proxy source files and other stub
files in the specified directory. The Converter
also builds CAP files as usual in the specified
output directory. Supports customizing the
proxy files generated by the Converter.
Requests the Converter retain the intermediate
proxy class source code in the specified
directory and the source code of the associated
stub classes representing the dependent
external classes using the hierarchical directory
structure of the Java package name(s).

-usecapcomponents component User-supplied cap components

-useproxyclass classpath User-supplied proxy classes (proxy classes not
generated by converter)

-i Specifies support the 32-bit integer type.

-exportpath list-of-directories Specifies the root directories where the
Converter looks for export files.

-exportmap Uses the token mapping from the pre-defined
export file of the package being converted. The
converter will look for the export file in the
exportpath.
74 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Using a Command Configuration File
Instead of entering all of the command line arguments and options on the command
line, you can include them in a text-format configuration file. This is convenient if
you frequently use the same set of arguments and options.

The syntax to specify a configuration file is:

converter –config filename

The filename argument contains the file path and file name of the configuration file.

-applet AID class-name Sets the applet AID and the class that defines
the install method for the applet.

-d root-directory-for-output Specifies the root directories where the
Converter outputs the files.

-out [CAP] [EXP] [JCA] Specifies that the Converter output the CAP file,
and/or the JCA file, and/or the EXP export file.

-V

or
-version

Displays the Converter version number.

-v

or
-verbose

Enables verbose output.

-help Displays the contents of this table.

-nowarn Instructs the Converter to not report warning
messages.

-mask Identifies this package is used for a mask.
Restrictions on native methods are relaxed.

-debug Enables generation of debugging information.

-nobanner Suppresses standard output messages.

-noverify Turns off verification. Verification is default.

-sign Signs the output CAP file.

-keystore keystore Specifies the keystore to use in signing.

-storepass storepass Specifies the keystore password.

-alias alias Specifies the keystore alias to use in signing.

-passkey passkey Specifies alias password.

TABLE 9-2 converter Command Options (Continued)

Option Description
Chapter 9 Backwards Compatibility for Classic Applets 75

You must use double quote (“) delimiters for the command line options that require
arguments in the configuration file. For example, if the options from the command
line example used in “Using Delimiters with Command Line Options” on page 76
were placed in a configuration file, the result would look like this:

-exportpath ".\export files;.;%JC_CONNECTED_HOME%\
api_export_files" MyWallet 0xa0:0x00:0x00:0x00:0x62:0x12:0x34 1.0

Using Delimiters with Command Line Options
If the command line option argument contains a space symbol, you must use
delimiters with this argument. The delimiter is a double quote (“ ”).

In the following sample command line, the Converter will check for export files in
the .\export files, %JC_CONNECTED_HOME%\api_export_files, and current
directories.

converter -exportpath ".\export files;.;%JC_CONNECTED_HOME%\
api_export_files" MyWallet 0xa0:0x00:0x00:0x00:0x62:0x12:0x34 1.0
76 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 10

Using the APDU Tool

When installing and running applets on a Java Card technology-compliant smart
card, the APDU tool reads a script file containing Application Protocol Data Unit
(APDU) commands and sends them to the Java Card runtime environment. Each
APDU is processed and returned to the APDU tool, which displays both the
command and response APDU commands on the console. Optionally, the APDU
tool can write this information to a log file.

The APDU I/O packages provide a convenient API for writing client-side
applications that communicate with Java Card technology-enabled smart cards, see
Chapter 14.

This chapter includes the following sections:

■ Running the APDU Tool From the Command Line

■ Using APDU Script Files

Running the APDU Tool From the
Command Line
The file used to invoke the APDU tool is the apdutool.bat batch file.

Unless otherwise specified, the APDU tool starts listening to APDU commands in
the default format of T=1 on the TCP/IP port specified by either the –p portNumber
parameter (for contacted) or the –p portNumber+1 parameter (for contactless). The
default port is 9025.

The command line usage for the APDU tool is:

apdutool.bat [-h hostname] [-nobanner] [-noatr] [-k] [-mi]
[-d | --descriptiveoutput] [-o outputFile] [-p portNumber]
[-s serialPort] [-t0] [-version] [-verbose] [inputFile ...]
77

The option values and their actions are shown in TABLE 10-1.

Examples of Using the APDU Tool
The following examples show how to use the APDU tool to direct output to the
console or to a file.

TABLE 10-1 apdutool Command Line Options

Option Description

-d

or
--descriptiveoutput

Formats the output in a more readable format.

-h hostname Specifies the host name on which the TCP/IP socket port is
found. (See the -p option.)

-help Displays online documentation for this command.

-k When using preprocessor directives in an APDU script, this
option generates a related preprocessed APDU script file in
the same directory as the APDU script.

-mi Optional, however, if the APDU script is switching between
contacted and contactless interfaces multiple times in the
same script file, this option is required.

-noatr Suppresses outputting an ATR (answer to reset).

-nobanner Suppresses all banner messages.

-o outputFile Specifies an output file. If an output file is not specified with
the -o option, output defaults to standard output.

-p portNumber Specifies a TCP/IP socket port other than the default port of
9025.

-s serialPort Specifies the serial port to use for communication, rather than
a TCP/IP socket port. For example, serialPort can be COM1.

To use this option, the javax.comm package must be
installed on your system.

If you enter the name of a serial port that does not exist on
your system, the APDU tool will respond by printing the
names of available ports.

-t0 Runs T=0 single interface.

-version Outputs the version information.

inputFile Allows you to specify the input script (or scripts).

-verbose Displays descriptive text during operation.
78 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Directing Output to the Console
The following command runs the APDU tool with the file example.scr as input.
Output is sent to the console. The default TCP port (9025) is used.

apdutool.bat example.scr

Directing Output to a File
The following command runs the APDU tool with the file example.scr as input.
Output is written to the file example.scr.out.

apdutool.bat -o example.scr.out example.scr

Using APDU Script Files
An APDU script file is a protocol-independent APDU format containing comments,
script file commands, and C-APDU commands. Script file commands and C-APDU
commands are terminated with a semicolon (;). Comments can be of any of the three
Java programming language style comment formats (//, /*, or /**).

APDU commands are represented by decimal, hex or octal digits, UTF-8 quoted
literals or UTF-8 quoted strings. C-APDU commands may extend across multiple
lines.

C-APDU syntax for the APDU tool is as follows:

CLA INS P1 P2 LC [byte 0 byte 1 ... byte LC-1] LE;

Where:

■ CLA - ISO 7816-4 class byte.

■ INS - ISO 7816-4 instruction byte.

■ P1 - ISO 7816-4 P1 parameter byte.

■ P2 - ISO 7816-4 P2 parameter byte.

■ LC - ISO 7816-4 input byte count. 1 byte in non-extended mode, 2 bytes in
extended mode.

■ byte 0 ... byte LC-1 - Input data bytes.

■ LE - ISO 7816- 4 expected output length. 1 byte in non-extended mode, 2 bytes in
extended mode.
Chapter 10 Using the APDU Tool 79

APDU Script File Commands
APDU script file commands are not case sensitive. The script file commands shown
in TABLE 10-2 are supported:

APDU Script Preprocessor Commands
APDU script supports preprocessor directives as depicted in the following script file
example, test.scr.

TABLE 10-2 Supported APDU Script File Commands

Command Description

contacted; Redirects APDU activity to the contacted or primary interface.

contactless; Redirects output to the contactless or secondary interface.

delay Integer; Pauses execution of the script for the number of milliseconds
specified by Integer.

echo "string"; Echoes the quoted string to the output file. The leading and trailing
quote characters are removed.

extended on; Turns extended APDU input mode on.

extended off; Turns extended APDU input mode off.

output off; Suppresses printing of the output.

output on; Restores printing of the output.

powerdown; Sends a powerdown command to the reader in the active interface.

powerup; Sends a powerup command to the reader in the active interface. A
powerup command must be sent to the reader prior to executing any
APDU on the selected interface.

#define walletApplet //aid/A000000062/03010C0101
#define purseApplet //aid/A000000062/03010C0102
#define walletCommand 0x80 0xCA 0x00 0x00 0x02 0xAB 0x08 0x7F
powerup;
SELECT purseApplet;
Send walletCommand to walletApplet on 19;
powerdown;
80 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

To check what the preprocessor has done, run the APDUTool with the -k flag to
create a file named test.scr.preprocessed in the same directory as test.scr.
The test.scr.preprocessed content then looks like this:

powerup;
SELECT //aid/A000000062/03010C0102;
Send 0x80 0xCA 0x00 0x00 0x02 0xAB 0x08 0x7F to
//aid/A000000062/03010C0101 on 19;
powerdown;
Chapter 10 Using the APDU Tool 81

82 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 11

Debugging Applications

This chapter describes the Debugger tool (debugproxy) for Java Card 3 platform
application developers and how to use it as a separate tool with any Java
technology-enabled IDE. Using the Debugger, developers can debug their
applications in any Java technology-enabled IDE.

Debugger Architecture
The following diagram illustrates the debugger architecture for cjcre.

FIGURE 11-1 Debugger Architecture

The Java Debug Wire Protocol (JDWP) used by the IDE is heavy for a small VM such
as that provided by cjcre. Consequently, cjcre uses KVM Debug Wire Protocol
(KDWP) to provide a minimum set of debugging capabilities. The Debugger tool,

DebugProxy

Java IDE

Command Line

(NetBeans)

Java Debugger
(JDB)

Host-1 Host-2 Host-3

JDWP

JDWP

KDWP
cjcre.exe
83

debugproxy, translates and sends the translated JDWP commands from the IDE to
cjcre in KDWP format. Responses from cjcre are converted into JDWP format by
debugproxy before it sends them to the IDE.

The communication between cjcre, debugproxy, and the IDE happens through
sockets. Socket-based communication enables developers to debug cjcre from
remote hosts. For example, cjcre could run on machine1, debugproxy could run on
machine2, and the IDE could run on machine3. Developers can also run cjcre,
debugproxy, and the IDE on same host.

Ports used by IDE communication to and from debugproxy, and debugproxy
communication to and from cjcre, are distinguished by the names “listen port”
and “remote port” respectively.

Running the Debugger From the
Command Line
Use the Debugger tool’s functionality by starting debugproxy (debugproxy.bat),
then attaching it to a Java technology-enabled IDE, and then starting cjcre with the
-debug option. The file debugproxy.bat is located in the directory
JC_CONNECTED_HOME\bin. Various command line options are available to
configure the Debugger and cjcre. See “cjcre.exe Command Line Options” on
page 34 for additional details on the cjcre commands.

The command line interface for the Debugger has the following syntax:

debugger.bat subcommand [option]

The following is a list of the subcommands for the Debugger:

■ debug - Debugs the specified file

■ copyright - Displays detailed copyright notice

■ help - Displays information about the Debugger command
84 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

debug Subcommand
Use the debug subcommand to debug a file at a specified location.

copyright Subcommand
The copyright subcommand displays the detailed copyright notice. There are no
options associated with this subcommand.

help Subcommand
The help subcommand displays information about the Debugger command.
Options are used with the help subcommand to specify the information that is
displayed about each subcommand. For example, to display detailed help about the
debug subcommand, type:

debugproxy.bat help debug

Debugging a Java Card 3 Platform
Application
This section describes how to debug an application using the development kit
command line tools.

TABLE 11-1 debug Subcommand Options

Option Description

-c filelocation
or
--classpath filelocation

Specifies the path of the class files to be
debugged.

-C command-options-file
or
--commandoptionsfile command-options-file

Optional. Specifies a file containing
command line options.
Chapter 11 Debugging Applications 85

Compile the Source Code
To fully utilize the capabilities of the Debugger, the application’s class files must first
be compiled with debug information. This is done by specifying the -g flag for
javac when compiling the source files. These class files must be available to
debugproxy so the line number information can be retrieved while stepping
through the code. All source files must be compiled using the -g option to generate
the debug information in the class files. If the -g option is not used, it is not possible
to set breakpoints in the source code.

Start the Debugger
The Debugger needs to know the location of class files being debugged. The
Debugger can be run from the command line using the following syntax, for
example:

debugproxy.bat debug -c myapp.war

When starting debugproxy, you can include the -c (or --classpath) option in the
command line to specify the path of the class files to be debugged. In this example,
myapp.war is the location of the class files to be debugged.

Attach the Debugger to the IDE
This procedure is performed from within the IDE and so the details depend on the
IDE used. If your IDE requires the Debugger to be attached, refer to the
documentation provided with the IDE.

Run cjcre.exe With -debug Option
This -debug option of cjcre enables debugging functionality in cjcre. Without
this option, debugging functionality is disabled in cjcre. See “cjcre.exe
Command Line Options” on page 34 for additional details on the cjcre commands.

Set Break Points
Break points must be set in the application source code. The exact procedure
depends on the IDE used. The following steps are typical for most IDEs. Refer to the
documentation provided with your IDE for specific instructions.
86 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

1. Display the source code of the application in the IDE.

2. With the source code displayed in the IDE, open any file and set break points
where required.

Break points can be set at any time, even before attaching the Debugger.

3. Step through the code by executing the application from within the IDE.

When a break point is hit, the IDE stops execution and highlights the current line.
Depending on the IDE being used, there are various options available to
developers for stepping over or stepping into the code.

Note – Various IDE windows are available to monitor items such as local variables
and threads. Refer to the documentation provided by the IDE for additional
information about the windows used in monitoring debugger and application
execution.
Chapter 11 Debugging Applications 87

88 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

PART II Programming With the Development Kit

This part of the user’s guide provides solutions for various programming issues.

CHAPTER 12

Configuring the RI

This chapter describes the options used to configure a custom RI. This chapter is
useful only if you have a source release of the development kit. For real cards, there
are a few items such as Protection Domains and Certificates that must be setup at
manufacturing time. The RI provides a means of configuring some factory settings
by using the config.properties file under the lib folder.

This chapter contains the following sections:

■ Configuring Authenticators

■ Creating Custom Protection Domains

■ Configuring SSL Support

Configuring Authenticators
In the lib\config.properties file, the following properties must be added to
add an authenticator:

■ authenticator.index.uri

■ authenticator.index.factory

■ authenticator.index.pin

■ authenticator.index.digest

The following items describe the contents of the preceding list of properties:

■ index is a zero based number. At startup, the RI starts reading these properties
beginning with index zero and creates authenticators until the sequence is broken.

■ The URI property provides the SIO uri used for this authenticator.

■ The factory property provides the factory class. For example,
com.sun.javacard.security.PINSessionAuthenticatorFactory.
91

■ The pin property provides the pin for this authenticator.

■ The digest property is set to true or false depending on if the provided
authenticator is of type digest or not.

Creating Custom Protection Domains
The Java Card 3 platform RI assigns a protection domain to an application based on
the certificate used to sign the application bundle with the Packager tool. In the
lib\config.properties file the following properties must be added to add a
new protection domain:

■ pd.pd-index.certificate

■ pd.pd-index.include.include-index

■ pd.pd-index.exclude.exclude-index

The following items describe the contents of the preceding list of properties:

■ All the indexes (pd-index, include-index, and exclude-index) are zero based numbers.

■ The certificate property provides the BASE-64 encoded certificate.

■ The include.include-index property provides a list of permissions that should be
included for this protection domain.

■ The exclude.exclude-index property provides a list of permissions that should be
excluded for this protection domain.

Creating a Custom Keystore
A custom keystore can be crested by using the keytool command to generate the
certificates and private keys. The keytool command runs in batch mode without
prompting for input values.

Enter the following keytool command and options on the command line:

keytool -genkey -alias alias -keyalg RSA
keytool -selfcert -alias alias
keytool -list -rfc

java DumpPrivateKey

This is how the PolicyManager.java certificate and key were generated.

For scripting, use the following keytool command:

keytool -keystore keystore -storepass keystore-password \
92 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

-alias alias -keypass alias-password -genkey \
-keyalg RSA -dname "cn=X, ou=U, o=O, c=US"

Configuring SSL Support
An SSL implementation requires four algorithms:

■ digital signature

■ key establishment

■ bulk encryption

■ message digest

Note – It is beyond the scope of this document to fully describe SSL configuration
and setup. There are many excellent books on this subject, and we direct advanced
users to this literature.

Adding SSL Support
The Java Card 3 platform implements the SSL key establishment algorithm through
the use of the following set of certificates and keys as key=value pairs in lib\
config.properties. In the file lib\config.properties, the following
properties must be added to add SSL support:

■ ssl.trusted.ca.# - Index-based property to specify BASE-64 encoded
certificates of the CA root that Java Card 3 RI trusts. Used in the normal SSL
handshake. This property is index based. User can configure multiple CA roots by
appending the index at the end of the property, such as ssl.trusted.ca.0,
ssl.trusted.ca.1, and ssl.trusted.ca.2. The indexes are assumed to be in
sequence starting with zero. When the sequence is broken, it is assumed the
properties have ended.

■ ssl.accepted.issuer.# - Index based property to specify BASE-64 encoded
accepted issuer's certificates. Used only in client authentication handshake. User
can configure multiple issuer certificates by appending the index at the end of the
property, such as ssl.accepted.issuer.0, ssl.accepted.issuer.1, and
ssl.accepted.issuer.2. The indexes are assumed to be in sequence starting
with zero. When the sequence is broken, it is assumed the properties have ended.

■ ssl.selfIdentityAsServer - BASE-64 encoded server certificate. This is the
certificate that the Java Card 3 platform uses to identify itself when operating in
SSL server mode.
Chapter 12 Configuring the RI 93

■ ssl.selfIdentitySSLPrivateKeyExp - BASE-64 encoded private key
(exponent) of the server certificate.

■ ssl.selfIdentitySSLPrivateKeyMod - BASE-64 encoded private key
(modulus) of the server certificate.

■ PSKIdentityHint - String value used in the PSK protocol as a server side identity
hint.

Custom Certificates and Keys
Custom implementations require that the developer generate corresponding custom
certificates and keys. The certificates and keys are used by the Card Manager to
verify the digital signature of a WAR file and are used in SSL and HTTPS
transactions.

▼ Generating an SSL Certificate
1. Generate a server key and certificate signing request (csr):

openssl genrsa -out s.key 1024

openssl req -new -key s.key -out server.csr

2. Generate a CA key and self-signed certificate:

openssl genrsa -out ca.key 1024

openssl -req new -x509 -days 365 -key ca.key -out ca.crt

3. Sign the csr and create the certificate:

sign.sh server.csr
94 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 13

Building the RI From Sources

This chapter describes how to build a customized Java Card 3 platform RI. This
chapter is useful only if you have a source release of the development kit. The src
folder under JC_CONNECTED_HOME contains all of the source files for the RI
including VM code, and all tools (such as the packager and installer). You can
modify or add to these files and build a customized Java Card 3 platform RI
according to their specific requirements. The following actions are possible reasons a
developer might have for building a custom RI:

■ Add additional classes or packages if a proprietary API or other implementation
classes are used.

■ Fine tune the existing sources.

■ Update tools to work with target platform.

■ Romize the applications. Romizing masks the applications into the cjcre.exe.

This chapter contains the following sections:

■ Prerequisites to Building the RI

■ Contents of JC_CONNECTED_HOME\src Folder

■ Running the ROMizer Tool From the Command Line

■ Building a Custom cjcre.exe

Prerequisites to Building the RI
Before building the RI, the following software must be installed on the system:

■ MinGW

■ JDK 6

■ Ant
95

See Chapter 2 for more details on these requirements.

Contents of JC_CONNECTED_HOME\
src Folder
The following describes the contents of the src folder.

■ api - Contains all of the .java files required to build a custom RI. If a new
package must be added, it is added under this folder.

■ tools - Contains the source code of all shipped tools organized in separate folders.
To make a tool to work with a target platform, edit the code of the corresponding
tool.

■ romized_apps - Contains the source files for the CardManager.

■ vm\c - Contains the source files of core VM.

■ vm\h - Contains the header files of core VM.

■ vm\lib - Contains configuration files config.properties and system. See
Chapter 12 for additional details.

■ vm\ignore.list - If a class must be excluded from romization, add its name in
this file.

■ build.xml - The main file used to build the tools and cjcre.exe in a single step.

■ aplImpl.jar

■ bat.template

■ crypto.jar

Running the ROMizer Tool From the
Command Line
When building a custom RI, the ROMizer tool takes system class files and
application modules as input and creates a ROM image of these in an output ROM
image file. The ROMizer tool converts the class files into C code, which is often
called a ROM mask or simply a mask. For applications, the ROMizer tool stores non-
class files in appropriate directories in the internal Java Card 3 platform file system,
so that these files are available during the execution of the application. See “Building
a Custom cjcre.exe” on page 100 for detailed description of using the ROMizer
tool.
96 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

The command line interface for the ROMizer has the following syntax:

romizer.bat subcommand [options]

The following is a list of the subcommands for the ROMizer:

■ romize - Romizes the system class files and application modules

■ copyright - Displays detailed copyright notice

■ help - Displays information about the ROMizer command

romize Subcommand
Use the romize subcommand and its options to romize the system class files and
application modules. Options are used with the romize subcommand to specify
files and directories.

romize Subcommand Options
TABLE 13-1 identifies the romize subcommand options and provides their
descriptions.

TABLE 13-1 romize Subcommand Options

Option Description

-a apps-filename
or
--apps apps-filename

Specifies the file that contains the list of
applications to be masked.

-C command-options-file
or
--commandoptionsfile command-options-
file

Optional. Specifies a file containing
command line options.

-e EEPROM- filename
or
--e2pfile EEPROM- filename

Specifies the file where the initial eeprom
file is written.

-o ROM-output-filename
or
--out ROM-output-filename

Specifies the file where the mask is written.
Chapter 13 Building the RI From Sources 97

romize Subcommand Example
Either of the following commands will run the ROMizer tool:

romizer.bat romize -o ROM-output-filename -e EEPROM- filename -a apps-filename

or

romizer.bat romize --out ROM-output- filename --e2pfile EEPROM -filename \

--apps apps-filename

In the previous examples, the following options are used:

■ -o (or --out) - Must be followed by the path to the output file where the mask
is written. For example:

--out MyROMJava.c

See “Romizer Tool Output” on page 99 for a description of the ROM output file.

■ -e (or --e2pfile) - Must be followed by the path to the initial eeprom file.
For example:

--e2pfile myeeprom.eeprom

■ -a (or --apps) - Must be followed by the path to the applications list file which
contains the list of applications to be masked. For example:

--apps myapps.list.

See “Example Contents of Apps List File” on page 99 for a description of the
configuration file.

copyright Subcommand
The copyright subcommand displays the detailed copyright notice. There are no
options associated with this subcommand.

help Subcommand
The help subcommand displays information about the ROMizer. Options are used
with the help subcommand to specify the information that is displayed about each
sub-command.

For example, to see detailed help about the ROMizer tool, type:

romizer.bat help romize
98 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Apps list File Contents
The apps list file contains information about applications that need to be romized.
All system classes and applications must be provided as input to the romizer in
compressed files (.jar, .war, or .zip files).

Each application file must be specified in the apps list file on a new line. Each
application module entry in the configuration file must provide additional
information as noted in the following format example:

application-module -t <web|classic-applet|extended-applet|classic-lib| \

extension-lib> -s signature-file -n module-name

In the previous example, the following parameters are used:

■ application-module is the .jar, .war, or .zip application module file.

■ -t followed by web, classic-applet, extended-applet, classic-lib, or
extension-lib to identify the type of application being romized.

■ -s followed by the name of the properties file that contains the BASE64 encoded
certificate and signature, where signature-file represents the file name.

This file is a simple properties file containing the following properties as name-
value pairs:

■ signature=base64 encoded signature

■ certificate=certificate to validate this group and digest

■ -n followed by the module name that will be referenced by cjcre.exe for this
application module.

The following is an example of an entry in the configuration file:
HelloWorld.war -t web -s mykey1.txt -n helloapp

Example Contents of Apps List File
The following is an example of the contents of an apps list file:

HelloWorld.war -t web -s key1.txt -n helloapp

GCFClient.war -t web -s key2.txt -n gcfapp

Romizer Tool Output
The output created by running the ROMizer tool is a preliminary EEPROM file and
a C language source file that contains the ROM image of the input file including the
following:

■ Java class files that contain the API implementation
Chapter 13 Building the RI From Sources 99

■ Implementation of containers

■ Applications selected by the user for romization

Building a Custom cjcre.exe
The build.xml provided in the src folder build everything including tools and
cjcre.exe. This section gives details on how the cjcre.exe is generated.

Developers can modify the RI by adding or modifying the reference implementation
code and using the ROMizer tool. RI consists of .java and C source files. The core
VM is written in C programming language and rest of the API and supported
implementation is written in the Java programming language. The ROMizer tool
converts the class files into C code, which is often called the ROM mask or simply
the mask. Then all the C source code is compiled to an executable to generate
cjcre.exe.

The ROM image can include any supported application files (web, extended-applet,
classic-applet, extension library, and classic library). ROMized applications can be
instantiated without requiring download after the runtime environment starts up.
The ROMizer tool takes system class files and application module as input and
creates a ROM image of these in an output ROM image file.

For applications, the ROMizer tool stores the non-class files in appropriate
directories in the internal Java Card 3 platform file system, so that these files are
available during the execution of the application.

FIGURE 13-1 illustrates the procedure of building the cjcre.exe from sources.
100 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

FIGURE 13-1 Building cjcre.exe From Sources

Java files are compiled into class files using the javac compiler. Details of
applications to be ROMized are listed in a text file. The class files and the list file are
given as input to the romizer.bat tool (see “Preprocessor Symbols to Customize
the VM” on page 101). By default romizer.bat generates ROMJava.c, a C file that
contains the information about all classes and applications.

The GNU C compiler (gcc) is used to build the final executable. The generated
ROMJava.c and the rest of the C files are compiled using gcc, which generates
cjcre.exe. Use the provided ANT build file to build custom cjcre.exe. See
“Build a Custom RI From the Command Line” on page 102.

Preprocessor Symbols to Customize the VM
The following preprocessor symbols can be used to customize the Java Card VM:

■ INCLUDEDEBUGCODE=0

■ TRACE_EXCEPTIONS_NATIVE=1

■ INCLUDE_FIREWALL_DEBUG_CODE=0

■ ENABLE_JAVA_DEBUGGER=1

*.java javac *.class

romizer.bat

ROM Java.c

*.c and *.h

gcc cjcre.exe

Applications

*.war
*.eap
*.cap
Chapter 13 Building the RI From Sources 101

Enables the kdwp code. Default is 1. If set to 0, then cjcre can not be used to
debug the applications.

■ ENABLE_LOGGING=1

Enables the logging messages that are printed by using -loggerlevel=
<value>. Default is 1. If set to 0, then even if -loggerlevel is set to all, no
logging messages are printed from native code.

■ APDU_PROTOCOL_T=0

Controls the protocol that will be supported by cjcre. default is t=0. Valid
values are 0, 1 for T=0, T=1 respectively.

■ APDU_INTERFACE=0

Contacted or contactless or both. Valid values are 0, 1, 2 for contacted,
contactless and Dual respectively

▼ Build a Custom RI From the Command Line
1. Edit the files or add more files.

2. Update the tools source code if required.

3. From command line navigate to the src folder and run the ant command.

If there is a apps list file that contains the list of applications for ROMization, set
the property apps_file_for_romizer while running the ant command as
shown:

ant -Dapps_file_for_romizer=path-to-apps-file

The ant command creates the JC_CONNECTED_HOME\custom_build folder
with a bin and lib folder under it.

■ The bin directory contains the new cjcre.exe and all of the other tool’s
.bat files.

■ The lib folder contains the .jar files and config files.

JC_CONNECTED_HOME\custom_build\bin and
JC_CONNECTED_HOME\custom_build\lib are similar to
JC_CONNECTED_HOME\bin and JC_CONNECTED_HOME\lib, except that
custom_build contains the binaries from the updated source code.

▼ Test the Custom RI
● Use the following command to run the new cjcre.exe file stored in

JC_CONNECTED_HOME\custom_build\bin.
102 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

JC_CONNECTED_HOME\custom_build\bin\cjcre.exe [options]

See Chapter 5 for a description of the available options.

Files created as a result of running or building the custom RI are stored in the
JC_CONNECTED_HOME\custom_build\bin and JC_CONNECTED_HOME\
custom_build\lib directories. These directories are created the first time the RI is
built and will be over written every time the RI is built.
Chapter 13 Building the RI From Sources 103

104 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

CHAPTER 14

Working with APDU I/O

This chapter describes the APDU I/O API, which is a library used by many Java
Card development kit components, such as apdutool.

The APDU I/O library can also be used by developers to develop Java Card client
applications and Java Card platform simulators. It provides the means to exchange
APDUs by using the T=0 protocol over TLP224, by using T=1.

The library is located in the file lib\tools.jar.

The APDU I/O API
The following sections describe the APDU I/O API. All publicly available APDU
I/O client classes are located in the package com.sun.javacard.apduio.

Javadoc tool files for the APDU I/O APIs are located in this bundle at
JC_Connected_HOME\docs\apduio\.

APDU I/O Classes and Interfaces
The APDU I/O classes and interfaces are described in this section.

■ class Apdu

Represents a pair of APDUs (both C-APDU and R-APDU). Contains various
helper methods to access APDU contents and constants providing standard
offsets within the APDU.

■ interface CadClientInterface

Represents an interface from the client to the card reader or a simulator. Includes
methods for powering up, powering down and exchanging APDUs.
105

■ void exchangeApdu(Apdu apdu)

Exchanges a single APDU with the card. Note that the APDU object contains
both incoming and outgoing APDUs.

■ public byte[] powerUp()

Powers up the card and returns ATR (Answer-To-Reset) bytes.

■ void powerDown(boolean disconnect)

Powers down the card. The parameter, applicable only to communications with
a simulator, means “close the socket”. Normally, it is true for contacted
connection, false for contactless. See “Two-interface Card Simulation” on
page 107 for more details.

■ void powerDown()

Equivalent to powerDown(true).

■ abstract class CadDevice

Factory and a base class for all CadClientInterface implementations included
with the APDU I/O library. Includes constants for the T=0 and T=1 clients.

The factory method static CadClientInterface
getCadClientInstance(byte protocolType, InputStream in,
OutputStream out) returns a new instance of CadClientInterface. The in
and out streams correspond to a socket connection to a simulator. Protocol type
can be one of:

■ CadDevice.PROTOCOL_T0

■ CadDevice.PROTOCOL_T1

Exceptions
Various exceptions may be thrown in case of system malfunction or protocol
violations. In all cases, their toString() method returns the cause of failure. In
addition, java.io.IOException may be thrown at any time if the underlying
socket connection is terminated or could not be established.

■ CadTransportException extends Exception

■ T1Exception extends CadTransportException

■ TLP224Exception extends CadTransportException
106 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Two-interface Card Simulation
To simulate dual-interface cards with the RI the following model is used:

■ The simulator (cjcre) listens for communication on two TCP sockets: (n) and
(n+1), where n is the default (9025) or the socket number given in the command
line.

■ The client creates two instances of the CadClientInterface, with protocols T=
1 on both. One of these instances communicates on the port (n), while the other
communicates on the port (n+1).

■ Each of these client interfaces needs to issue the powerUp command before being
able to exchange APDUs.

■ Issuing the powerDown command on the contactless interface closes all
contactless logical channels. After this, the contacted interface is still available to
exchange APDUs. The client also may issue powerUp on a contactless interface
again and continue exchanging APDUs on the contactless interface too.

■ Issuing the powerDown command on the contacted interface closes all channels
and causes the simulator (cjcre) to exit. That is, any activity after powering
down the contacted interface requires restarting the simulator and reestablishing
connections between the client and the simulator.

■ At most, one socket can be processing an APDU at any time. The client may send
the next APDU only after the response of the previous APDU is received. This
means, behavior of the client+simulator still remains deterministic and
reproducible.

■ If you have a source release of the Java Card development kit, you can see a
sample implementation of such a dual-interface client in the file
ReaderWriter.java inside the apdutool source tree.

Examples of Use
The following sections give examples of how to use the APDU I/O API.

To Connect To a Simulator
To establish a connection to a simulator such as cjcre, use the following code.
Chapter 14 Working with APDU I/O 107

This code establishes a T=0 connection to a simulator listening to port 9025 on
localhost. To open a T=1 connection instead, in the last line replace PROTOCOL_T0
with PROTOCOL_T1.

Note – For dual-interface simulation, open two T=1 connections on ports (n) and
(n+1), as described in “Two-interface Card Simulation” on page 107.

To Establish a T=0 Connection To a Card
To establish a T=0 connection to a card inserted in a TLP224 card reader, which is
connected to a serial port, use the following code.

Note – For this code to work, you need a TLP224-compatible card reader, which is
not widely available. You also need the javax.comm library installed on your
machine. See “Prerequisites to Installing the Development Kit” on page 11 for details
on how to obtain this library.

To Power Up And Power Down the Card
To power up the card, use the following code.

cad.powerUp();

CadClientInterface cad;
Socket sock;
sock = new Socket(“localhost”, 9025);
InputStream is = sock.getInputStream();
OutputStream os = sock.getOutputStream();
cad=CadDevice.getCadClientInstance(CadDevice.PROTOCOL_T0, is, os);

String port = “com1”; // serial port's name
CommPortIdentifier portId = CommPortIdentifier.getPortIdentifier(port);
String appname = “Name of your application”;
int timeout = 30000;
CommPort commPort = portId.open(appname, timeout);
InputStream is = commPort.getInputStream();
OutputStream os = commPort.getOutputStream();
cad=CadDevice.getCadClientInstance(CadDevice.PROTOCOL_T0, is, os);
108 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

To power down the card and close the socket connection (for simulators only), use
either of the following code lines.

cad.powerDown(true);

or

cad.powerDown();

To power down, but leave the socket open, use the following code. If the simulator
continues to run (which is true if this is contactless interface of the RI) you can issue
powerUp() on this card again and continue exchanging APDUs.

cad.powerDown(false);

The dual-interface RI is implemented in such a way that once the client establishes
connection to a port, the next command must be powerUp on that port.

For example, the following sequence is valid:

1. Connect on "contacted" port.

2. Send powerUp to it.

3. Exchange some APDUs.

4. Connect on "contactless" port.

5. Send powerUp to it.

6. Exchange more APDUs.

However, the following sequence is not valid:

1. Connect on "contacted" port.

2. Connect on "contactless" port.

3. Send powerUp to any port.

To Exchange APDUs
To exchange APDUs, first create a new APDU object using the following code:

Apdu apdu = new Apdu();

Copy the header (CLA, INS, P1, P2) of the APDU to be sent into the
apdu.command field.

Set the data to be sent and the Lc using the following code:
Chapter 14 Working with APDU I/O 109

apdu.setDataIn(dataIn, Lc);

where the array dataIn contains the C-APDU data, and the Lc contains the data
length.

Set the number of bytes expected into the apdu.Le field.

Exchange the APDU with a card or simulator using the following code:

cad.exchangeApdu(apdu);

After the exchange, apdu.Le contains the number of bytes received from the card or
simulator, apdu.dataOut contains the data received, and apdu.sw1sw2 contains
the SW1 and SW2 status bytes.

These fields can be accessed through the corresponding get methods.

To Print the APDU
The following code prints both C-APDU and R-APDU in the apdutool output
format.

System.out.println(apdu)
110 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

APPENDIX A

Application Module and Library
Formats

This appendix describes the application module and library formats supported by
the Java Card 3 platform card manager. Applications are distributed and deployed as
application module JAR files. The application module distribution format JAR file
contains one application. Libraries are distributed and deployed as standard library
JAR files containing the library classes.

There are two types of library formats:

■ The extension library JAR file is a standard library JAR format containing Java
class files. Extension library classes are accessible to all applications on the card.
Instances of classes instantiated from the extension library are placed in the owner
context of the application which creates the instance.

■ The classic library JAR file is a standard JAR library format containing Java class
files. Classic library classes are only accessible to the classic applications on the
card. Instances of classes instantiated from the classic library are placed in the
owner context of the classic application which creates the instance.

This appendix contains the following sections:

■ Web Application Module Format

■ Extended Applet Application Module Distribution Format

■ Classic Applet Application Module Format

■ Extension Library Format

■ Classic Library Format
111

Web Application Module Format
FIGURE A-1 shows the directory structure of the web application module distribution
format. The structure must be that of the web archive (.war) file with the following
differences:

■ No support for application private library directory WEB-INF\lib

■ An additional Java Card 3 platform-specific application descriptor file
javacard.xml is supported. The format of this descriptor is specified in Runtime
Environment Specification, Java Card Platform, Version 3.0.1, Connected Edition.

FIGURE A-1 Web Application Module Format

See the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for specific details about the web application module format.

WEB-INF/

META-INF/

classes/

web.xml

javacard.xml

MANIFEST.MF

<package name>/*

<package name>/*

<package name>/*

<Resource Files>

/

112 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Extended Applet Application Module
Distribution Format
FIGURE A-2 shows the directory structure of the extended applet application module
format. See the Runtime Environment Specification, Java Card Platform, Version 3.0.1,
Connected Edition for specific details.

FIGURE A-2 Extended Applet Application Module

See the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for specific details about the extended applet application module format.

Classic Applet Application Module
Format
FIGURE A-3 shows the directory structure of the classic applet application module
distribution format. The structure is similar to that of the extended applet application
module with the following differences:

■ The classes directory contains only one package and optionally a subpackage
named proxy containing SIO proxy classes.

■ The Classic Edition’s CAP file components, *.cap, are included in the JAR file.

APPLET-INF/

META-INF/

classes/

applet.xml

javacard.xml

MANIFEST.MF

<package name>/*

<package name>/*

<package name>/*

/

Appendix A Application Module and Library Formats 113

See the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for specific details about the requirements of the classic applet application
module format.

FIGURE A-3 Classic Applet Application Module

Extension Library Format
The extension library distribution format uses the Java Platform Standard Edition
library JAR file structure. FIGURE A-4 shows the format of a Java Platform Standard
Edition library JAR file format.
114 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

FIGURE A-4 Java Platform Standard Edition Library JAR File Format

See the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for specific details about the extension library format.

Classic Library Format
FIGURE A-5 shows the format of a classic library distribution format. The classic
library distribution format uses the Java Platform Standard Edition library JAR file
format (see FIGURE A-4) with the following restrictions and additions:

■ It contains only one package and, optionally, a subpackage proxy containing SIO
proxy classes.

■ It includes the classic CAP file components, *.cap, in a directory named
javacard that is in a subdirectory representing the library package directory as
described in Virtual Machine Specification, Java Card Platform, Version 3.0.1, Classic
Edition. The format of the CAP file components are described in Virtual Machine
Specification, Java Card Platform, Version 3.0.1, Classic Edition.

See the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for specific details about the classic library format.

META-INF/ MANIFEST.MF

<package name>/*

<package name>/*

<package name>/*

/

Appendix A Application Module and Library Formats 115

FIGURE A-5 Classic Library Distribution Format
116 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Glossary

3GPP Third Generation Partnership Project (3GPP) formed by telecommunications
associations to develop 3rd Generation Mobile System specifications for
systems deployed across the GSM market. These specifications are available
on the 3GPP web site.

AID (application
identifier)

defined by ISO 7816, a string used to uniquely identify card applet
applications and certain types of files in card file systems. An AID consists of
two distinct pieces: a 5-byte RID (resource identifier) and a 0 to 11-byte PIX
(proprietary identifier extension). The RID is a resource identifier assigned to
companies by ISO. The PIX identifiers are assigned by companies.

A unique AID is associated with each applet class in an applet application
module. In addition, a unique AID is assigned to each applet instance during
installation. This applet instance AID is used by an off-card client to select
the applet instance for APDU communication sessions.

Applet instance URIs are constructed from their applet instance AID using
the "aid" registry-based namespace authority as follows:

//aid/<RID>/<PIX>

where <RID> (resource identifier) and <PIX> (proprietary identifier
extension) are components of the AID.

Ant a platform-independent software tool written in the Java programming
language that is used for automating build processes.

APDU an acronym for Application Protocol Data Unit as defined by ISO 7816-4
specifications. ISO 7816-4 defines the application protocol data unit (APDU)
protocol as an application-level protocol between a smart card and an
application on the device. There are two types of APDU messages, command
APDUs and response APDUs. For detailed information on the APDU
protocol see the ISO 7816-4 specifications.

APDU-based application
environment

consists of all the functionalities and system services available to applet
applications, such as the services provided by the applet container.
117

API an acronym for Application Programming Interface. The API defines calling
conventions by which an application program accesses the operating system
and other services.

applet a stateless software component that can only execute in a container on the
client platform. Within the context of this document, a Java Card applet,
which is the basic component of applet-based applications and which runs
in the APDU application environment.

applet application an application that consists of one or more applets.

applet container contains applet-based applications and manages their lifecycles through
the applet framework API. Also provides the communication services over
which APDU commands and responses are sent.

applet framework an API that enables applet applications to be built.

application descriptor see descriptor.

application developer The producer of an application. The output of an application developer is a
set of application classes and resources, and supporting libraries and files for
the application. The application developer is typically an application domain
expert. The developer is required to be aware of the application environment
and its consequences when programming, including concurrency
considerations, and create the application accordingly.

application group a set of one or more applications executing in a common group context.

application URI a URI uniquely identifying an application instance on the platform.

atomicity a property of transactions that requires all operations of a transaction be
performed successfully for the transaction to be considered complete. If all
of a transaction’s operations cannot be performed, none of them can be
performed.

classic applet applets with the same capabilities as those in previous versions of the
Java Card platform and in the Classic Edition.

Classic Edition one of the two editions in the Java Card 3 Platform. The Classic Edition is
based on an evolution of the Java Card Platform, Version 2.2.2 and is
backward compatible with it, targeting resource-constrained devices that
solely support applet-based applications.

Connected Edition one of the two editions in the Java Card 3 Platform. The Connected Edition
has a significantly enhanced runtime environment and a new virtual
machine. It includes new network-oriented features, such as support for
web applications, including the Java™ Servlet APIs, and also support
for applets with extended and advanced capabilities. An application
written for or an implementation of the Connected Edition may use
features found in the Classic Edition.
118 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Converter a piece of software that preprocesses all of the Java programming language
class files of a classic applet application that make up a package, and
converts the package into a standalone classic applet application module
distribution format (CAP file). The Converter also produces an export file.

create indicates that a web application of a module or an application group, that
was loaded by load, needs to be created. As a result, the required application
is accessible through some Web-Context root.

delete indicates that a web application instance created by create needs to be
deleted.

ETSI the European Telecommunications Standards Institute (ETSI) is an official
European Standards Organization that develops and publishes standards for
information and communications technologies. Additional information is
available on the ETSI web site.

descriptor a document that describes the configuration and deployment information of
an application. A deployment descriptor conveys the elements and
configuration information of an application between application developers,
application assemblers, and deployers. A runtime descriptor describes the
configuration and deployment information of an application that are specific
to an operating environment to which the application is to be deployed.

distribution format structure and encoding of a distribution or deployment unit intended for
public distribution.

extended applet an applet with extended and advanced capabilities (compared to a classic
applet) such as the capabilities to manipulate String objects and open
network connections.

garbage collection the process by which dynamically allocated storage is automatically
reclaimed during the execution of a program.

global array an applet environment array objects accessible from any context.

global authentication the scope of a user authentication that can be tracked globally (card-wide).
Global authentication is restricted to card-holder-users. Authorization to
access resources protected by a globally authenticated card-holder-user
identity is granted to all users.

GlobalPlatform (GP) an international association of companies and organizations that establish
and maintain interoperable specifications for single and multi-application
smart cards, acceptance devices, and infrastructure systems. Additional
information is available on the GlobalPlatform web site.

group context protected object space associated with each application group and Java Card
RE. All objects owned by an application belong to the context of the
application group.
119

ISO the International Standards Organization (ISO) is a non-governmental
organization of national standards institutes that develops and publishes
international standards for both public and private sectors. Additional
information is available on the ISO web site.

JAR file an acronym for Java Archive file, which is a file format used for aggregating
and compressing many files into one.

Java Card Runtime
Environment

consists of the Java Card virtual machine and the associated native methods.

Java Card Virtual
Machine (Java Card VM)

a subset of the Java virtual machine, which is designed to be run on smart
cards and other resource-constrained devices. The Java Card VM acts an
engine that loads Java class files and executes them with a particular set of
semantics.

JDK software an acronym for Java Development Kit. The JDK software is a Sun
Microsystems, Inc. product that provides the environment required for
software development in the Java programming language. The JDK software
is available for a variety of operating systems, for example Sun
Microsystems Solaris OS and Microsoft Windows.

KVM a virtual machine for small devices, the KVM is derived from the Java
virtual machine (JVM) but is written in the C programming language and
has a smaller footprint than the JVM. The KVM supports a subset of the JVM
features.

list indicates that the client is requesting information about all loaded
application groups and instances.

load indicates that a module or an application group needs to be deployed onto
the card but not yet made accessible.

mask production
(masking)

refers to embedding the Java Card virtual machine, runtime environment,
and applications in the read-only memory of a smart card during
manufacture.

mode (communication) designates the type or protocol of communication (HTTPS, SSL/TLS, SIO...)
and the mode of operation (client or server) that characterizes a
communication endpoint.

module a unit of distribution and deployment of component applications. Modules
or component applications are individual applications (standalone) and can
be assembled into application groups. Applications that rely on a single
component application can be deployed directly as standalone application
modules in addition to deployment as application groups.

MMC MultiMediaCard (MMC) is a flash memory card standard developed and
published by the MultiMediaCard Association.

namespace a set of names in which all names are unique.
120 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

non-volatile memory memory that is expected to retain its contents between card tear and power
up events or across a reset event on the smart card device.

normalization (classic
applet)

the process of transforming and repackaging a Java application packaged for
the Java Card Platform, Version 2.2.2, for deployment on both the Java Card
3 Platform, Connected Edition and the Java Card 3 Platform, Classic Edition.

normalization (URI) the process of removing unnecessary "." and ".." segments from the path
component of a hierarchical URI.

Normalizer in the Connected Edition, a backwards compatibility tool that allows Java
applications programmed for the Java Card Platform, Version 2.2.2, to be
deployed on both the Java Card 3 Platform, Connected Edition and on the
Java Card 3 Platform, Classic Edition. It also allows Java applications
packaged for Version 2.2.2 to be transformed through the normalization
process and then repackaged for deployment on both the Connected and
Classic Editions.

In the Classic Edition, a compatibility tool that enables developers to
generate application modules for Java Card 3 platform classic applets
they are creating or from classic applets created for previous versions of
the Java Card platform. These application modules contain CAP files
and are downloadable on both the Java Card 3 platform Classic Edition
and Connected Edition smart cards.

off-card client see off-card client application.

off-card client
application

an application that is not resident on the card, but runs at the request of a
user’s actions.

off-card installer the off-card application that transmits the application and library executables
to the card manager application running on the card.

package a namespace within the Java programming language that can have classes
and interfaces.

platform protection
domain

a set of permissions granted to an application or group of applications by the
platform security policy. A platform protection domain is defined by two
sets of permissions: a set of included permissions that are granted and a set
of excluded permissions that are denied and can never be granted.

platform security policy the permission-based security policy that maps application models to sets of
permissions granted to applications implementing these application models.
For each of the application models, the platform security policy guarantees
the consistency and integrity of the applications implementing the
application model.

protected content see protected resource.

protected resource an application or system resource that is protected by an access control
mechanism.
121

protection domain a set of permissions granted to an application or group of applications.

RAM (random access
memory)

temporary working space for storing and modifying data. RAM is
non-persistent memory; that is, the information content is not preserved
when power is removed from the memory cell. RAM can be accessed an
unlimited number of times and none of the restrictions of EEPROM apply.

reference
implementation

a fully functional and compatible implementation of a given technology. It
enables developers to build prototypes of applications based on the
technology.

reference applications blue print-like applications that demonstrate the interactions between
various applications on the card using advanced features such as SIO and
events.

remote user an user whose identity may be assumed by a remote entity, such as a remote
card administrator.

remotely accessible web
application

an application that is not expected to interact with the card holder but with
other-users, potentially remote.

restartable task an object implementing the Runnable interface that has been registered for
recurrent execution over card sessions. A task executes in its own thread.

restartable task registry a Java Card RE facility that is used for registering tasks for recurrent
execution over card sessions.

security requirements the required security characteristics for a particular secure communication
being established by either an application or by the web container on behalf
of a web application.

server application an on-card application that provides a service to its clients.

service a shareable interface object that a server application uses to provide a set of
well-defined functionalities to its clients.

service facility a Java Card RE facility (or subsystem) that is used for inter-application
communications.

service factory an object that the Java Card RE invokes to create a service - on behalf of the
server application that registered that service - for a client application that
looked up the service.

service registry the core component of the service facility. The service facility is used for
registering and looking up services.

service URI a URI that uniquely identifies a service provided by a server application.

servlet a web application component, managed by a container, that generates
dynamic web content and that runs in the web application environment.

servlet container see web application container.
122 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

servlet context a container-managed object that defines a servlet’s view of the web
application within which the servlet is running. A servlet context is rooted at
a known path within a web server: a context path.

servlet mapping a servlet definition that is associated by a servlet container with a URL path
pattern. All requests to that path pattern are handled by the servlet
associated with the servlet definition. See Java Servlet Specification, Connected
Edition.

shareable interface an interface that defines a set of shared methods. These interface methods
can be invoked from an application in one group context when the object
implementing them is owned by an application in another group context.

shareable interface object
(SIO)

an object that implements the shareable interface.

shareable interface
object-based service

see service.

smart card a card that stores and processes information through the electronic circuits
embedded in silicon in the substrate of its body. Unlike magnetic stripe
cards, smart cards carry both processing power and information. They do
not require access to remote databases at the time of a transaction.

SSL Secure Socket Layer (SSL), like the later TLS protocol, is a cryptographic
protocol for securely transmitting documents by using a two key
cryptographic system (a public key and a private key) to encrypt and
decrypt data.

terminal is typically a computer in its own right with an interface which connects
with a smart card to exchange and process data.

thread the basic unit of program execution. A process can have several threads
running concurrently each performing a different job, such as waiting for
events or performing a time consuming job that the program doesn't need to
complete before going on. When a thread has finished its job, it is suspended
or destroyed.

thread’s active context when an object instance method is invoked, the owning context of the object
becomes the currently active context for that particular thread of execution.
Synonymous with currently active context.

transaction an atomic operation in which the developer defines the extent of the
operation by indicating in the program code the beginning and end of the
transaction.

transaction facility a Java Card RE facility that enables an application to complete a single
logical operation on application data atomically, consistently and durably
within a transaction.
123

transient object the state of transient objects do not persist from one card session to the next,
and are reset to a default state at specified intervals. Updates to the values of
transient objects are not atomic and are not affected by transactions.

transferable classes classes whose instances can have their ownership transferred to a context
different from their currently owning context. Transferable classes are of two
types:

Implicitly transferable classes - Classes whose instances are not bound to
any context (group contexts or Java Card RE context) and can, therefore, be
passed and shared between contexts without any firewall restrictions.
Examples are Boolean and literal String objects.

Explicitly transferable classes - Classes whose instances must have their
ownership explicitly transferred to another application’s group context in
order to be accessible to that other application. Examples are arrays and
newly created String objects.

transfer of ownership a Java Card RE facility that allows for an application to transfer the
ownership of objects it owns to an other application. Only instances of
transferable classes can have their ownership transferred.

trusted client an on-card or off-card application client that an on-card application trusts on
the basis of credentials presented by the client.

trusted client credentials credentials that an on-card application uses to ascertain the identity of
clients it trusts.

TLS Transport Layer Security (TLS), like the earlier SSL protocol, is a
cryptographic protocol for securely transmitting documents either by
endpoint authentication of the server or by mutual authentication of the
server and the client.

unload indicates that the module or application group that was loaded by load needs
to be removed completely from the card. By default, if there are some
instance(s) created, then unload will fail. Optional -f (or –force) will attempt
to delete all instances before unloading.

uniform resource
identifier (URI)

a compact string of characters used to identify or name an abstract or
physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both. See RFC 3986 for
more information.

uniform resource locator
(URL)

a compact string representation used to locate resources available via
network protocols or other protocols. Once the resource represented by a
URL has been accessed, various operations may be performed on that
resource. See RFC 1738 for more information. A URL is a type of uniform
resource identifier (URI).
124 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

USB Universal Serial Bus (USB) is a serial bus specification developed and
published by the USB Implementers Forum that when implemented enables
external devices such as flash drives, PDAs, and printers to connect to a host
controller.

verification a process performed on an application or library executable that ensures that
the binary representation of the application or library is structurally correct.

volatile memory memory that is not expected to retain its contents between card tear and
power up events or across a reset event on the smart card device.

volatile object an object that is ideally suited to be stored in volatile memory. This type of
object is intended for a short-lived object or an object which requires
frequent updates. A volatile object is garbage collected on card tear (or
reset).

web application a collection of servlets, HTML documents, and other web resources that
might include image files, compressed archives, and other data. A web
application is packaged into a web application archive.

All compatible servlet containers must accept a web application and perform
a deployment of its contents into their runtime. This may mean that a
container can run the application directly from a web application archive file
or it may mean that it will move the contents of a web application into the
appropriate locations for that particular container. See Java Servlet
Specification, Connected Edition.

web application archive the physical representation of a web application module. A single file that
contains all of the components of a web application. This archive file is
created by using standard JAR file tools, which allow any or all of the web
components to be signed.

A web application archive file is identified by the .war extension and is
often referred to as a WAR file. A new extension is used instead of .jar
because that extension is reserved for files which contain a set of class files
and that can be placed in the classpath. As the contents of a web application
archive are not suitable for such use, a new extension was required. See Java
Servlet Specification, Connected Edition.

web application
container

contains and manages web applications and their components (for example,
servlets) through their lifecycle. Also provides the network services over
which HTTP requests and responses are sent and manages security of web
applications.

web application
environment

in addition to the Java Card RE, consists of all the functionalities and system
services available to web applications, such as the services provided by the
web application container.

web client an off-card entity that requests services from an on-card web application. A
typical example is a web browser.
125

126 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

Index
A
AID (application identifier), 117
APDU, 77

script file commands, 80
script files, 79

APDU I/O, xvii, 105
APDU tool

apdutool.bat, 77
command line options, 78
command line syntax, 77
description, 77
running, 77

APDU-based application environment, 117
apdutool.bat, 77
API, 118
applet, 118
applet application, 118
applet container, 118
applet framework, 118
application descriptor, 118
application developer, 118
application group, 118
application module formats, 111
Application Protocol Data Unit, 77
application URI, 118
architecture

Debugger tool, 83

C
C Java Card Runtime Environment, 33
CAP file, 113

suppressing output, 73
card installer

off-card Installer tool, 51
on-card installer, 51
use case, 63

cjcre.exe, 6
starting, 33

classic applet, 118
classic applet application module

distribution format, 113
Classic Edition, 118
classic library

distribution format, 115
classic_applets sample, 31
command configuration file, 76
command line examples

Compiler tool, 39
command line options

APDU tool, 78
command line syntax

Compiler tool, 38
Packager tool, 43

Compiler tool
command line examples, 39
command line options, 37
command line syntax, 38
description, 37
running, 37
unsupported features, 37

configuring
Debugger tool, 84

Connected Edition, 118
127

Converter, 119
Converter tool

command configuration file, 76
creating a debug.msk file, 72
described, 69
input file naming conventions, 73
invoking the off-card verifier, 72
output, 69
output file naming conventions, 73

converting
Java class files, 69

D
debug.msk file

creating, 72
Debugger tool

architecture, 83
configuring, 84
description, 83
running, 86

description
Compiler tool, 37
Debugger tool, 83
Installer tool, 53
javacardc.bat, 37
on-card installer, 51
samples, 27
web samples, 29

developing applications, 23
Development Kit

additional software (required), 8
bundle, 6
Connected Edition features, 4
installation, 11
Normalizer tool, 65
samples, 8
system requirements, 8
tools, 7
uninstalling, 19

distribution format, 119
classic applet application module, 113
classic library, 115
extended applet application module, 113
extension library, 114

E
EEPROM, 33

export file
loading, 71

export map
specifying, 71

extended applet, 119
extended applet application module

distribution format, 113
extended_applets sample, 31
extension library

distribution format, 114

F
functionality

Installer tool, 53
on-card installer, 52

I
input file

naming conventions for the Converter tool, 73
input files

suppressing verification, 72
verifying, 72

installation of Development Kit, 11
Installer tool, 53

description, 53
functionality, 53
installer.bat, 53
running, 53
subcommands, 53

installer.bat, 53

J
Java Card 3 platform

bundle, 6
developing applications, 23
Reference Implementation, 6

Java Card Runtime Environment, 33
Java Card runtime environment

starting, 33
Java Card TCK, 9
Java Debug Wire Protocol, 84
javac, 37
javacardc.bat, 24, 37

description, 37
JDK compiler, 37
JDWP, 84
128 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

K
KDWP, 84
KVM Debug Wire Protocol, 84

L
library formats, 111
loading applications, 51

M
managing applications, 51

N
Normalizer tool, 65
normalizer.bat, 65

O
off-card verifier

invoking, 72
suppressing verification, 72

on-card installer
description, 51
functionality, 52
operation, 52

operation
on-card installer, 52
Packager tool, 41

options
Packager tool, 41

output file
naming conventions for the Converter tool, 73

output files
suppressing verification, 72
verifying, 72

P
Packager tool

command line syntax, 43
operation, 41
options, 41
output conditions, 42
packager.bat, 43
signing a module, 43
subcommands, 43

packager.bat, 43
protected content, 121

R
Reference Implementation, 6, 33

starting, 33
reimplementing a package or method, 71
RI, 6
running

Compiler tool, 37
Debugger tool, 86
Installer tool, 53

S
samples, 8

classic_applets, 31
description, 27
extended_applets, 31
web, 29

script file commands
APDU, 80

script files
APDU, 79

signing a module, 43
starting

cjcre.exe, 33
subcommands

Installer tool, 53

T
TCK see Java Card TCK
Technology Compatibility Kit see Java Card TCK
thread’s active context, 123
tools, 7

U
uninstalling the Development Kit, 19
use-case

card installer, 63

W
web samples

description, 29
Index 129

130 Development Kit User’s Guide, Java Card 3 Platform, Connected Edition • December 2009

	Development Kit User’s Guide
	Contents
	Figures
	Tables
	Preface
	I Setup, Samples and Tools
	Introduction
	Platform Architecture
	Development Kit Description
	Connected Edition Features
	Connected Edition Security Model
	Application Models

	Development Kit Contents
	Reference Implementation
	Development KitDevelopment KitCommand Line Tools
	Samples

	System Requirements
	Additional Software
	Java Card TCK

	Installation
	Prerequisites to Installing the Development Kit
	Install and Setup the Development Kit
	Installing the Development Kit
	Setting Up the System Variables

	Installed Directories and Files
	Directories and Files Installed From All Bundles
	Subdirectories and Files Installed in the src Directory

	Uninstall the Development Kit
	Install and Setup the NetBeans IDE
	Installing the NetBeans IDE
	Setting Up the Java Card Platform

	Developing Java Card 3 Platform Applications
	Development Steps

	Using the Samples
	Running the Samples
	Running the Samples from the NetBeans IDE
	Accepting an Untrusted Certificate

	Using the Web Application Sample
	Using the HelloWorld Sample
	Run HelloWorld

	Using the Classic Applet Sample
	Using the Extended Applet Sample

	Starting the Java Card Runtime Environment
	Starting cjcre.exe from the Command Line
	cjcre.exe Command Line Options

	Java Card Runtime Environment Configuration Files
	Adding Proprietary Packages

	Compiling Source Code
	Running the Compiler Tool from the Command Line
	Compiler Tool Options
	Format
	Examples

	Creating and Validating Application Modules
	Packager Operation
	Options
	Basic Packaging Sequence
	Use Cases

	Signing
	Use Cases

	Running the Packager From the Command Line
	create Subcommand
	create Subcommand Format
	create Subcommand Options
	create Subcommand Examples

	validate Subcommand
	validate Subcommand Format
	validate Subcommand Options
	validate Subcommand Example

	copyright Subcommand
	copyright Subcommand Format
	copyright Subcommand Options
	copyright Subcommand Example

	help Subcommand
	help Subcommand Format
	help Subcommand Options
	help Subcommand Example

	Use Cases

	Loading and Managing Applications
	Description of the On-Card Installer
	On-card Installer Operation
	On-card Installer Functionality

	Description of the Installer Tool
	Running the Installer Tool From the Command Line
	load Subcommand
	create Subcommand
	delete Subcommand
	unload Subcommand
	list Subcommand
	help Subcommand

	Card Installer Use Case
	Load an Application
	Pre-Conditions
	Post-Conditions
	Sequence of Events

	Backwards Compatibility for Classic Applets
	Generating Application Modules From Classic Applets
	Running the Normalizer From the Command Line
	normalize Subcommand
	copyright Subcommand
	help Subcommand

	Converting Class Files to CAP Files
	Conversion Process Sequence
	Specifying an Export Map
	Loading Export Files
	Creating a debug.msk Output File
	Verification of Input and Output Files
	File and Directory Naming Conventions
	Input File Naming Conventions
	Output File Naming Conventions

	Running the Converter From the Command Line
	converter Command Options
	Using a Command Configuration File
	Using Delimiters with Command Line Options

	Using the APDU Tool
	Running the APDU Tool From the Command Line
	Examples of Using the APDU Tool
	Directing Output to the Console
	Directing Output to a File

	Using APDU Script Files
	APDU Script File Commands
	APDU Script Preprocessor Commands

	Debugging Applications
	Debugger Architecture
	Running the Debugger From the Command Line
	debug Subcommand
	copyright Subcommand
	help Subcommand

	Debugging a Java Card 3 Platform Application
	Compile the Source Code
	Start the Debugger
	Attach the Debugger to the IDE
	Run cjcre.exe With -debug Option
	Set Break Points

	II Programming With the Development Kit
	Configuring the RI
	Configuring Authenticators
	Creating Custom Protection Domains
	Creating a Custom Keystore

	Configuring SSL Support
	Adding SSL Support
	Custom Certificates and Keys
	Generating an SSL Certificate

	Building the RI From Sources
	Prerequisites to Building the RI
	Contents of JC_CONNECTED_HOME\ src Folder
	Running the ROMizer Tool From the Command Line
	romize Subcommand
	romize Subcommand Options
	romize Subcommand Example

	copyright Subcommand
	help Subcommand
	Apps list File Contents
	Example Contents of Apps List File

	Romizer Tool Output

	Building a Custom cjcre.exe
	Preprocessor Symbols to Customize the VM
	Build a Custom RI From the Command Line
	Test the Custom RI

	Working with APDU I/O
	The APDU I/O API
	APDU I/O Classes and Interfaces
	Exceptions

	Two-interface Card Simulation
	Examples of Use
	To Connect To a Simulator
	To Establish a T=0 Connection To a Card
	To Power Up And Power Down the Card
	To Exchange APDUs
	To Print the APDU

	Application Module and Library Formats
	Web Application Module Format
	Extended Applet Application Module Distribution Format
	Classic Applet Application Module Format
	Extension Library Format
	Classic Library Format

	Glossary
	Index

