A Follow-up Cg Runtime Tutorial
for Readers of The Cg Tutorial’

Mark J. Kilgard
NVIDIA Corporation
Austin, Texas

April 20, 2005

The source code discussed in this tutorial is

installed by the Cg Toolkit installer for Windows at
c:\Program Fil es\NVI DI A Cor por at i on\ Cg\ exanpl es\ OpenG.\ basi c\ 24_bunp_nmap_t or us

When Randy and | wrofEhe Cg Tutorial we wanted a book that would convey our
intense enthusiasm for programmable graphics usirigsBgrt for C for Graphics. We
focused our tutorial on the language itself: What is the Cg language and how do you
write Cg programs for programmable graphics hardware?

We chose our language focus for a couple of different reasons.

First off, the language is where all the power and new concepts are. @niceeyface

Cg into your graphics application, it's the Cg language that really rmatt@r a
conventional CPU programming language, explaining the Cg runtime is somewhat akin
to explaining how to edit programs and how to run the compiler. Obviously, you've got
to learn these tasks, but there’s nothing profound about using an editor or compiler.
Likewise, there’s nothing deep about the Cg runtime either; it's a fairly Isti@igyard
programming interface.

Second, how you interface Cg to your application is a matter of personal design and
depends on the nature of your application and your choice of application programming
language, operating system, and 3D programming interface. While Rachdyaie

happy to explain Cg and show how to program your graphics hardware with it, you are
the person best able to interface Cg into your application code.

" You have permission to redistribute or make digitehard copy of this article for non-commercial o
educational use.

" The Cg Tutoriaby Randima (Randy) Fernando and Mark J. KilgapLislished by Addison-Wesley
(ISBN 0321194969, 336 pages). The book is nowaiai in Japanese translation (ISBN4-939007-55-3).

¥ Cg in Two Pageghttp://xxx.lant. Wv/ftp/cs/aapers/CSCZ/CSCZClG)Mj Mark J. Kilgard is a short
overview of the Cg iainguagecy: A Sysiei for rluglalllllllllg \JlaphICS Hardware iB-tke Language
(http://www.cs.utexas.edu/users/billmark/paperd/3gBill Mark, Steve Glanville, Kurt Akeley, and &k
J. Kilgard is a SIGGRAPH 2003 paper explaining Gigsign in 12 pages.

http://xxx.lanl.gov/ftp/cs/papers/0302/0302013.pdf
http://www.cs.utexas.edu/users/billmark/papers/Cg

Third, the language shares its design, syntax, and semantics with MicrBs@ts 9
High-Level Shader Language (HLSL). This means you can chose whether to use
Microsoft's HLSL runtime (ideal for developers focused on DirectX for thediiivs
platform) or the Cg runtime—supplied by NVIDIA—for those of you who want to
support a broad range of operating systems and 3D programming intesiadeag
Linux, Apple’s OS X, and OpenGL). BecauBee Cg Tutoriafocuses on the Cg
language, all the concepts and syntax explained in the book apply whether you choose to
use the Cg or HLSL implementation when it comes time to actually writesiauaier
programs. Since there’s been some confusion about this point, understdaricbtGag
Tutorial examples in the book compile wighitherlanguage implementation. We hope
The Cg Tutorials an instructive book about both @gdHLSL.

To avoid all the mundane details necessary to interface Cg programs to a reatiappli

The Cg Tutoriaincludes an accompanying CD-ROMith a software framework so you

can examine and modify the various Cg programs in the book and see the rendering
results without worrying about the mundane details of writing a full applicdtading
models and textures, and interfacing Cg to your application. Still, the book does provide
a brief appendix describing the Cg runtime programming interface for both OeniGL
Direct3D.

1. Follow-up: A Complete Cg Demo

Still, there’s not @ompletebasic example that shows how everything fits together. With
that in mind, this article presents a complete graphics demo written in AN@tE C

renders a procedurally-generated bump-mapped torus. The demo’s two Cg programs are
taken directly from the book’s Chapter 8 (Bump Mapping). While the Cg programs are
reprinted at the end of the article, please cogudt Cg Tutoriafor an explanation of the
programs and the underlying bump mapping background and mathematics.

The demo renders with OpenGL and interfaces with the window system via the cross-
platform OpenGL Utility Toolkit (GLUT)" To interface the application with the Cg
programs, the demo calls the generic Cg and OpenGL-specific CgGL runtime routines

OpenGL, GLUT, and the Cg and CgGL runtimes are supported on Windows, OS X, and
Linux so the demo source code compiles and runs on all these operating systems. The
demo automatically selects the most appropriate profile for your hardwgreupports
multi-vendor OpenGL profiles (hamelyt, bvpl andar bf p1) so the demo works on

" You can download the latest version of the sofenazcompanyindhe Cg Tutoriafrom
http://developer.nvidia.com/object/ca_tutorial safte.htmlfor either Windows or Linux. For best
results, make sure you have the latest graphigsrdrilatest Cg toolkit, and latest versionrog Cg

b pPEIpG D [y Py | PR |
Lululial cAallipies inistalcu.

" Documentation, source code, and pre-compiled Glibf&ries are available from
http://www.opengl.org/developers/documentation/giliml

http://developer.nvidia.com/object/cg_tutorial_software.html
http://www.opengl.org/developers/documentation/glut.html
http://www.opengl.org/developers/documentation/glut.html

GPUs from ATI, NVIDIA, or any other OpenGL implementation, such as Brian $aul’
open source Mesa library, that exposes the multi-vesridiver t ex_pr ogramand
ARB_f ragment _pr ogramOpenGL extensions.

| verified the demo works on DirectX 9-class hardware including ATI's Bad&00 and
similar GPUs, NVIDIA's GeForce FX products, and the GeForce 6 Seftes.demo

even works on older NVIDIA DirectX 8-class hardware such as GeForce3 and &&Forc
Ti GPUs.

So this article’s simple Cg-based demo handles multiple operating systentifferent
GPU hardware generations (DirectX 8 & DirectX 9), and hardware frertwtb major

GPU vendors (and presumably any other OpenGL implementation exposing OpenGL'’s
standard, multi-vendor vertex and fragment program extensions) with absalutely
GPU-dependent or operating system-dependent code.

To further demonstrate the portability possible by writing shaders in Cg, paalsma
compile the discussed Cg programs with Microsoft’'s HLSL runtime with no chamges t
the Cg programs.

This unmatched level of shader portability is why the Cg language radibalhges how
graphics applications get at programmable shading hardware today. With one high-leve
language, you can write high-performance, cross-platform, cross-vendorpasStr

API shaders. Just as you can interchange images and textures stoie@,a8N8, and
Targa files across platforms, you can now achieve a similar level of ietafmlity with
something as seemingly hardware-dependent as a hardware shadiitignalgor

2. Demo Source Code Walkthrough

The demo, nameely_bunpdeno, consists of the following five source files:

=

cg_bunpdenmp. c—ANSI C source code for the demo.

2. brick_i mge. h—Header file containing RGB8 image data for a mipmapped
128x128 normal map for a brick pattern.

3. nmap_i mage. h—Header file containing RGB8 image data for a normalization
vector cube map with 32x32 faces.

4. C8E6v_t orus. cg—Cg vertex program to generate a torus from a 2D mesh of
vertices.

5. C8E4f _specSur f. cg—Cg fragment program for surface-local specular and

diffuse bump mapping.

Later, we will go througleg_bunpdeno. ¢ line-by-line.
To keep the demo self-contained and maintain the focus on how the Cg runtime loads,

compiles, and configures the Cg programs and then renders with them, this demo uses
static texture image data included in the two header files.

The data in these header files are used to construct OpenGL texture abjadisick
pattern normal map 2D texture and a “vector normalization” cube map. These texture
objects are sampled by the fragment program.

The data in the two headers files consists of hundreds of comma-separated nulinbers (I
save you the tedium of publishing all the numbers in this article...). Rather than stati
data compiled into an executable, a typical application would read normal mapgexture
from on-disk image files or convert a height-field image file to a normal ma&gwise,

a “normalization vector” cube map is typically procedurally generateéréan loaded
from static data.

The two Cg files each contain a Cg entry function with the same name as thEhfdse
functions are explained in Chapter 8 (Bump Mapping)te Cg Tutorial These files

are read by the demo when the demo begins running. The demo uses the Cg runtime to
read, compile, configure, and render with these Cg programs.

Rather than rehash the background, theory, and operation of these Cg programs, you
should consult Chapter 8 ®he Cg Tutorial Pages 200 to 204 explain the construction

of the brick pattern normal map. Pages 206 to 208 explain the construction and
application of a normalization cube map. Pages 208 to 211 explains specular bump
mapping, including these4f _specSurf fragment program. Pages 211 to 218 explain
texture-space bump mapping. Pages 218 to 224 explain the construction of the per-vertex
coordinate system needed for texture-space bump mapping for the special case of a
object (the torus) that is generated from parametric equations bgahe t or us vertex
program.

For your convenience and so you can map Cg parameter names used in the C source file
to their usage in the respective Cg programs, the complete conteaEswoft or us. cg
andCsE4f _specSurf. cg are presented in Appendix A and Appendix B at the end of this
article (the Cg programs are short, so why not).

3. Ontothe C Code

Now, it’s time to disseatg_bunpdeno. ¢ line-by-line as promised (we’ll skip comments
in the source code if the comments are redundant with the discussion below).

To help you identify which names are external to the program, the following werds a
listed inbol df ace within the C code: C keywords; C standard library routines and
macros; OpenGL, GLU, and GLUT routines, types, and enumerants; and Cg and CgGL
runtime routines, types, and enumerants.

3.1. Initial Declarations

#i ncl ude <math.h>

#i ncl ude <stdlib.h>

#i ncl ude <stdio.h>

#i ncl ude <GL/glut.h>
#i ncl ude <Cg/cg.h>

#i ncl ude <Cg/cgGL.h>

The first three includes are basic ANSI C standard library includes. Weéelisingsi n,
cos, printf,exit,andNuLL. We rely on the GLUT header file to include the necessary
OpenGL and OpenGL Utility Library (GLU) headers.

The<Cg/ cg. h> header contains generic routines for loading and compiling Cg programs
but does not contain routines that call the 3D programming interface to configurg the C
programs for rendering. The generic Cg routines begin withpaefix; the generic Cg
types begin with &G prefix; and the generic Cg macros and enumerations begin with a
CG_ prefix.

The<Cg/ cgGL. h> contains the OpenGL-specific routines for configuring Cg programs
for rendering with OpenGL. The OpenGL-specific Cg routines begin wigfeaprefix;
the OpenGL-specific Cg types begin witlh@eL prefix; and the OpenGL-specific Cg
macros and enumerations begin witbcaL_ prefix.

Technically, the<Cg/ cgG.. h> header includesCg/ cg. h> so we don’t have to explicitly
include<cg/ cg. h> but we include both to remind you that we’ll be calling both generic
Cg routines and OpenGL-specific Cg routines.

I* An OpenGL 1.2 define */
#def i ne GL_CLAMP_TO_EDGE 0x812F

/* A few OpenGL 1.3 defines */

#defi ne GL_TEXTURE_CUBE_NAP 0x8513

#defi ne GL_TEXTURE_BI NDI NG_CUBE_MAP 0x8514
#defi ne GL_TEXTURE_CUBE_MAP_PCSI TI VE_X 0x8515

We will use these OpenGL enumerants later when initializing our “normahzatctor”
cube map. We list them here explicitly since we can’t courtangl . h> (included by
<@/ gl ut . h> above) to have enumerants added since OpenGL 1.1 because Microsoft
still supplies the dated OpenGL 1.1 header file.

Next, we'll list all global variables we plan to use. We userthprefix to indicate
global variables that we define (to make it crystal clear what namasengefining
rather than those names defined by header files). When we declare a&\afrabipe
defined by the Cg runtime, we use thesg prefix to remind you that the variable is for
use with the Cg runtime.

3.1.1. Cg Runtime Variables

static CGcontext myCgContext;

static CHrofil e myCgVertexProfile,
myCgFragmentProfile;

static CGrogram myCgVertexProgram,
myCgFragmentProgram;

static CQGaranet er myCgVertexParam_lightPosition,
myCgVertexParam_eyePosition,
myCgVertexParam_modelViewProj,
myCgVertexParam_torusinfo,
myCgFragmentParam_ambient,
myCgFragmentParam_LMd,
myCgFragmentParam_LMs,
myCgFragmentParam_normalMap,
myCgFragmentParam_normalizeCube,
myCgFragmentParam_normalizeCube2

These are the global Cg runtime variables the demo initializes uses. We imege €3
compilation context named CgCont ext . Think of your Cg compilation context as the
“container” for all the Cg handles you manipulate. Typically your prograpnnes just
one Cg compilation context.

We need two Cg profile variables, one for our vertex program profile named

myCgVer t exPr of i | e and another for our fragment program profile named
myCgFragment Profi | e. These profiles correspond to a set of programmable hardware
capabilities for vertex or fragment processing and their associatedtsn

environment. Profiles supported by newer GPUs are generally more fundtiamal t
older profiles. The Cg runtime makes it easy to select the most approprideefprof

your hardware as we’ll see when we initialize these profile variables

Next we need two Cg program handles, one for our vertex program named
myCgVer t exPr ogr amand another for our fragment program named

my CgFr agment Program When we compile a Cg program successfully, we use these
handles to refer to the corresponding compiled program.

We'll need handles to each of the uniform input parameters used by our vertex and
fragment programs respectively. We use these handles to match the uniform input
parameters in the Cg program text with the opaque OpenGL state used tomtlagntai
corresponding Cg program state. Different profiles can maintain Cg pragase with
different OpenGL state so these Cg parameter handles abstract awataitseof how a
particular profile manages a particular Cg parameter.

ThenycCgVert exPar am_ prefixed parameter handles end with each of the four uniform
input parameters to th@E6v_t or us vertex program in Appendix A. Likewise, the

my CgFr agnent Par am_ prefixed parameter handles end with each of the six uniform input
parameters to these4v_specSur f fragment program in Appendix B.

In a real program, you’ll probably have more Cg program handles than just two. You
may have hundreds depending on how complicated the shading is in your application.
And each program handle requires a Cg parameter handle for each input pardimster
means you probably won’t want to use global variables to store these handles. You'll
probably want to encapsulate your Cg runtime handles within “shader objectsiajpat
well combine vertex and fragment Cg programs and their parameters witlsgntiee
object for convenience. Keep in mind that this demo is trying to be very simple.

3.1.2. Other Variables

static const char *myProgramName = "cg_bumpdemo”,

*myVertexProgramFileName = "C8E6v _torus.cg",
*myVertexProgramName = "C8E6v_tor us",
*myFragmentProgramFileName = "C8E 4f _specSurf.cg”,
*myFragmentProgramName = "C8E4f_s pecSurf";

We need various string constants to identify our program name (for erragasssd

the window name), the names of the file names containing the text of the vertex and
fragment Cg programs to load, and the names of the entry functions for each of these
files.

In Appendix A, you'll find the contents of tl@E6v_t or us. cg file and, within the file’s
program text, you can find the entry function naro@ebv_t orus. In Appendix B,
you'll find the contents of these4f _specsSurf. cg file and, within the file’s program
text, you can find the entry function nai@ge4f _specSurf.

static float myEyeAngle =0,

myAmbient[4] = { 0.3f, 0.3f, 0.3f, 0.3 f}, /* Dull white */
myLMd[4] = { 0.9f, 0.6f, 0.3f, 1.0f }, I* Gold */
myLMs[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; /* Bright white */

These are demo variables used to control the rendering of the scene. The vaegr rot
around the fixed torus. The angle of rotation and a degree of elevation for the viewer is
determined byyEyeAngl e, specified in radians. The other three variables provide
lighting and material parameters to the fragment program parametéhsthége

particular values, the bump-mapped torus has a “golden brick” look.

3.1.3. Texture Data

[* OpenGL texture object (TO) handles. */
enum{
TO_NORMALIZE_VECTOR_CUBE_MAP =1,
TO_NORMAL_MAP = 2,

¥

TheTO_prefixed enumerants provide numbers for use as OpenGL texture object names.

static const GLubyte

myBrickNormalMaplmage[3*(128*128+64*64+32*32+16*16+ 8*8+4*4+2*2+1*1)] = {
/* RGB8 image data for mipmapped 128x128 normal map for a brick pattern */
#i ncl ude "brick_image.h"

¥

static const GLubyte

myNormalizeVectorCubeMaplimage[6*3*32*32] = {

/* RGB8 image data for normalization vector cube ma p with 32x32 faces */
#i ncl ude "normcm_image.h"

h

These static, constant arrays include the header files containing tHierdaanormal

map’s brick pattern and the “normalization vector” cube map. Each texel is 3 unsigned
bytes (one for red, green, and blue). While each byte of the texel formaigisaths

normal map components, as well as the vector result of normalizing an arbiteatiodir
vector, are logically signed values within the [-1,1] range. To accommodaéglsig

values with OpenGL’s conventional_RGB8 unsigned texture format, the unsigned [0,1]
range is expanded in the fragment program to a signed [-1,1] range. This astirefor
theexpand helper function called by th&se4f _specSurf fragment program (see
Appendix B).

The normal map has mipmaps so there is data for the 128x128 level, and then, each of the

successively downsampled mipmap levels. The “normalization vector” cube map has si
32x32 faces.

3.2. Error Reporting Helper Routine

static voi d checkForCgError(const char *situation)

{
CGer r or error;
const char *string = cgGet Last Error Stri ng(&error);
i f (error!= CG_NO_ERROR) {
printf ("%s: %s: %s\n",
myProgramName, situation, string);
if (error == CG_COWPI LER_ERROR) {
printf("%s\n", cgGet Last Li sti ng(myCgContext));
exit (1);
}
}

Cg runtime routines report errors by setting a global error value. §#ikn

cgGet Last Error St ri ng routine both returns a human-readable string describing the last
generated Cg error and writes an error code of &gper or . CG_NO_ERROR (defined to

be zero) means there was no error. As a side-efiggtt Last Error St ri ng also resets

the global error value toG_NO ERROR. The Cg runtime also includes the simpler
functioncgGet Err or that just returns and then resets the global error code if you just
want the error code and don’t need a human-readable string too.

ThecheckFor CgEr r or routine is used to ensure proper error checking throughout the
demo. Rather than cheap out on error checking, the demo checks for errors after
essentially every Cg runtime call by callieigeck For CgError . If an error has occurred,
the routine prints an error message includingstheiat i on string and translated Cg
error value string, and then exits the demao.

When the error returned @& _COWPI LER_ERROR that means there are compiler error
messages t00. SteckFor CgError then callgGet Last Li sti ng to get a listing of the
compiler error messages and prints these out too. For example, if your Cg progeam had
syntax error, you'd see the compiler’s error messages including the firteeraiwhere

the compiler identified problems.

While “just exiting” is fine for a demo, real applications will want to properlydi@ any
errors generated. In general, you don’t have to be so paranoid as to call

cgGet Last Error St ri ng after every Cg runtime routine. Check the runtime API
documentation for each routine for the reasons it can fail; when in doubt, check for
failures.

3.3. Demo Initialization

static voiddisplay(void);
static voidkeyboard(unsigned charc, intx, inty)

i nt main(i nt argc, char **argv)

{
const CGLubyt e *image;
unsi gned i nt size, level, face;

Themai n entry-point for the demo needs a few local variables to be used when loading
textures. We also need to forward declaredthgl ay andkeyboard GLUT callback
routines for redrawing the demo’s rendering window and handling keyboard events.

3.3.1. OpenGL Utility Toolkit Initialization

gl ut I ni t WndowSi ze (400, 400);
gl utl nit Di spl ayMbde(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
gl ut I ni t (&argc, argv);

gl ut Cr eat eW ndow(myProgramName);
gl ut Di spl ayFunc(display);
gl ut Keyboar dFunc(keyboard);

Using GLUT, we request a double-buffered RGB color 400x400 window with a depth
buffer. We allow GLUT to take a pass parsing the program’s command line aatgume
Then, we create a window and registerdinepl ay andkeyboar d callbacks. We'll
explain these callback routines after completely initializing GLUTer@@®l_, and Cg.
That'’s it for initializing GLUT except for callingl ut Mai nLoop to start event processing
at the very end afai n.

3.3.2. OpenGL Rendering State Initialization

gl d ear Col or (0.1, 0.3, 0.6, 0.0); /* Blue background */
gl Matri xMode(G._PRQIECTI ON);

gl Loadl denti ty();

gl uPer specti ve(

60.0, /* Field of view in degree */
1.0, /* Aspect ratio */

0.1, /* Z near */

100.0); /* Z far */

gl Mat ri xMode(G._MODELVI EW;
gl Enabl e(G._DEPTH_TEST);

Next, we initialize basic OpenGL rendering state. For better aesthet change the
background color to a nice sky blue. We specify a perspective projection matrix and
enable depth testing for hidden surface elimination.

3.3.3. OpenGL Texture Object Initialization

gl Pi xel St orei (G._UNPACK_ALI GNMVENT, 1); /* Tightly packed texture data. */

By default, OpenGL'’s assumes each image scanline is aligned to begin on 4 byte
boundaries. However, RGB8 data (3 bytes per pixel) is usually tightly packed soea 1 byt
alignment is appropriate. That's indeed the case for the RGBS pixels in touastays

used to initialize our textures. If you didn’t know about this OpenGL pitfall before, y

do now?

3.3.3.1. Normal Map 2D Texture Initialization

gl Bi ndText ur e(G._TEXTURE_2D, TO_NORMAL_MAP);

[* Load each mipmap level of range-compressed 128 x128 brick normal
map texture. */
for (size = 128, level = 0, image = myBrickNormalMaplm age;
size > 0;

image += 3*size*size, size /= 2, level++) {
gl Texl mage2D(GL_TEXTURE_2D, level,
GL_RGBS, size, size, 0, GL_RGB, G._UNSI GNED_BYTE, image);

gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_M N_FI LTER,
GL_LI NEAR_M PMAP_LI NEAR);

We bind to the texture object for our brick pattern normal map 2D texture and load each
of the 7 mipmap levels, starting with the 128x128 base level and working down to the
1x1 level. Each level is packed into #hesri ckNor mal Mapl mage array right after the

* Being aware of pitfalls such as this one can yaxea lot of time debugging. This and other OpenGL
pitfalls are enumerated in my article “Avoiding C®@mmon OpenGL Pitfalls” found here
http://developer.nvidia.com/object/Avoiding Commonql Pitfalls.html An earlier HTML version of the
article (with just 16 pitfalls) is found here

http://www.opengl.org/developers/code/features/&itr echniqgues/oglpitfall/oglpitfall.htrnl

10

http://developer.nvidia.com/object/Avoiding_Common_ogl_Pitfalls.html
http://www.opengl.org/developers/code/features/KilgardTechniques/oglpitfall/oglpitfall.html

previous level. So the 64x64 mipmap level immediately follows the 128x128 level, and
so on. OpenGL’s default minification filter is “nearest mipmap linear” (agaieial
default—it means nearest filtering within a mipmap level and then bilinéznirfd)

between the adjacent mipmap levels) so we switch to higher-quality “hmparap

linear” filtering.

3.3.3.2. Normalize Vector Cube Map Texture Initialization

gl Bi ndText ur e(G._TEXTURE_CUBE_MAP, TO NORMALI ZE VECTOR CUBE_MAP);
[* Load each 32x32 face (without mipmaps) of rang e-compressed "normalize

vector" cube map. */
f or (face = 0, image = myNormalizeVectorCubeMaplmage;

face < 6;

face++, image += 3*32*32) {

gl Texl mage2D(GL_TEXTURE_CUBE_MAP_POSI Tl VE_X + face, 0,
GL_RGB8, 32, 32, 0, GL_RGB, G._UNSI GNED BYTE, image);

gl TexPar anet eri (G._TEXTURE_CUBE_MAP, GL_TEXTURE_M N _FILTER, G._LI NEAR);
gl TexPar anet eri (G._TEXTURE_CUBE_MAP, GL_TEXTURE WVRAP_S,
G._CLAMP_TO_EDGE);
gl TexPar anet eri (G._TEXTURE_CUBE_MAP, G._TEXTURE WRAP_T,
G._CLAMP_TO EDGE);

Next, we bind the texture object for the “normalization vector” cube'inégnded to
quickly normalize the 3D lighting vectors that are passed as texture coesdifdte

cube map texture has six faces but there’s no need for mipmaps. Each facedsmacke
thenyNor mal i zeVect or CubeMapl mage array right after the prior face with the faces
ordered in the order of the sequential texture cube map face OpenGL enumerants.

Again, the default minification state is inappropriate (this time because wehdwe’t
mipmaps) s@L_LI NEAR is specified instead. While the defa@lt REPEAT wrap mode

was fine for the brick pattern that we intend to tile over the surface of the tweus, t
GL_CLAWP_TO EDGE wrap mode (introduced by OpenGL 1.2) keeps one edge of a cube
map face from bleeding over to the other.

GLUT and OpenGL are now initialized so it is time to begin loading, compilimdy, a
configuring the Cg programs.

3.3.4. Cg Runtime Initialization

myCgContext = cgCr eat eCont ext ();
checkForCgError("creating context");

! Using a “normalization vector” cube map allows demo to work on older DirectX 8-class GPUs that
lacked the shading generality to normalize veateashematically. Ultimately as more capable GPUs
become ubiquitous, use of normalization cube magsiie to disappear in favor of normalizing a vecto
mathematically. See Exercise 5.

11

Before we can do anything with the Cg runtime, we need to allocate a Cgatoonpil
context withcgCr eat eCont ext . Typically, your application just needs one Cg
compilation context unless you have a multi-threaded application that requireshgsing
Cg runtime concurrently in different threads. Think of the Cg context as the tantex
container for all your Cg programs that are creating, loading (compiéind)configured
by the Cg runtime.

3.3.5. Cg Vertex Profile Selection

myCgVertexProfile = cgGLGet Lat est Profi | e(CG_GL_VERTEX);
cgG@.Set Opt i mal Opt i ons(myCgVertexProfile);
checkForCgError("selecting vertex profile");

We need a profile with which to compile our vertex program. We could hard-code a
particular profile (for example, the multi-vendas_PROFI LE_ARBVP1 profile), but we are
better off asking the CgGL runtime to determine the best vertex profiteifazurrent
OpenGL context by calling theyG_Get Lat est Prof i | e routine. (Keep in mind there’s a
current OpenGL rendering context that GLUT created for us when we called

gl ut Cr eat eW ndow.) cgGLGet Lat est Profi | e calls OpenGL queries to examine the
current OpenGL rendering context. Based on the OpelGEXTENSI ONS string, this
routine can decide what profiles are supported and then which hardware-supported
profile offers the most functionality and performance. Thes_VERTEX parameter
says to return the most appropriate vertex profile, but we can alsoGQ@sSFRAGVENT,
as we will do later, to determine the most appropriate fragment profile.

Cg supports a number of vertex profiles. These are the vertex profiles gqurrentl
supported by Cg 1.4 for OpenGIlcG_PROFI LE_VP40 corresponds to thep40 vertex
program profile for thew_vert ex_progran8 OpenGL extension (providing full access
to the vertex processing features of NVIDIA’'s GeForce 6 Series GPUsasue@rtex
textures).CG_PROFI LE_VP30 corresponds to the30 vertex program profile for the
NV_vert ex_progran2 OpenGL extension (providing full access to the vertex processing
features of NVIDIA’'s GeForce FX GPUs such as per-vertex dynamicliray).

CG_PROFI LE_ARBVP1 corresponds to th& bvpl vertex program profile for the

ARB_vert ex_programOpenGL extension (a multi-vendor OpenGL standard, supported
by both NVIDIA and ATI). CG_PROFI LE_VP20 corresponds to thg20 vertex program
profile for theNv_ver t ex_programandNV_vert ex_progranml_1 OpenGL extensions

(for NVIDIA’s GeForce3, GeForce4 Ti, and later GPUSs).

While several GPUs can support the same profile, there may be GPUesisatifiiques
the Cg compiler can use to make the most of the available functionality andtgenera
better code for your given GPU. By callingGLSet Opt i mal Opt i ons with the profile
we’ve selected, we ask the compiler to optimize for the specific hardwdeeglying our
OpenGL rendering context.

For example, some vertex profiles sucltasPROFI LE_VP40 support texture fetches but
typically support fewer texture image units than the hardware’s corresponratngeint-

12

level texture functionality.cgGLSet Opt i mal Opt i ons informs the compiler what the
hardware’s actual vertex texture image unit limit is.

3.3.5.1. Vertex Program Creation and Loading

myCgVertexProgram =
cgCr eat ePr ogr anfronFi | g(
myCgContext, [* Cg runtime context */

CG_SQURCE, [* Program in human-readable form */
myVertexProgramFileName, /* Name of file containing program */
myCgVertexProfile, [* Profile to try */
myVertexProgramName, [* Entry function name */

NULL); /* No extra compiler options */

checkForCgError("creating vertex program from f ile");

cgG.LoadPr ogr an{myCgVertexProgram);
checkForCgError("loading vertex program™);

Now we try to create and load the Cg vertex program. We use the optimal vertex profil
for our OpenGL rendering context to compile the vertex program contained in the file
named byryVer t exPr ogr anFi | eNanme. AS it turns out, th€sE6v_t or us vertex program

is simple enough that every Cg vertex profile mentioned in the last section isriahct
enough to compile thesE6v_t or us program.

ThecgCr eat ePr ogr anfr onFi | e call reads the file, parses the contents, and searches for
the entry function specified by Ver t exPr ogr amNarmre and, if found, creates a vertex
program for the profile specified myCgVvert exProfile. The

cgCr eat ePr ogr anfr onfFi | e routine is a generic Cg runtime routine so it just creates the
program without actually translating the program into a form that can be pagked3D
rendering programming interface.

You don’t actually need a current OpenGL rendering context to call
cgCr eat ePr ogr anfr onfFi | e, but you do need a current OpenGL rendering context that
supports the profile of the program tayG.LoadPr ogr amto succeed.

It is the OpenGL-specificgG.LoadPr ogr amroutine that translates the program into a
profile-dependent form. For example, in the case of the multi-vemdoep1 profile, this
includes calling th@rB_ver t ex_pr ogr amextension routing! Pr ogr anSt ri ngARB to
create an OpenGL program object.

We expectgG.LoadPr ogr amto “just work” because we’ve already selected a profile

suited for our GPU aneyCr eat ePr ogr anfr onFi | e successfully compiled the Cg
program into a form suitable for that profile.

13

3.3.5.2. Vertex Program Parameter Handles

myCgVertexParam_lightPosition =
cgGet NarredPar anet er (myCgVertexProgram, "lightPosition");
checkForCgError("could not get lightPosition para meter");

myCgVertexParam_eyePosition =
cgGet NanmedPar anet er (myCgVertexProgram, "eyePosition");
checkForCgError("could not get eyePosition parame ter");

myCgVertexParam_modelViewProj =
cgGet NarredPar anet er (myCgVertexProgram, "modelViewProj");
checkForCgError("could not get modelViewProj para meter");

myCgVertexParam_torusinfo =
cgCet NanmedPar anet er (myCgVertexProgram, "torusinfo");
checkForCgError("could not get torusinfo paramete m);

Now that the vertex program is created and successfully loaded, we miéithiihe Cg
parameter handles. Later during rendering initl! ay callback, we will use these
parameter handles to update whatever OpenGL state the compiled prograatesssoc
with each parameter.

In this demo, we know priori what the input parameter names are to keep things simple.
If we had no special knowledge of the parameter names, we could use Cg runtime
routines to iterate over all the parameter names for a given prograrh€see t

cgGet Fi r st Par amet er , cgGet Next Par anet er , and related routines—use these for
Exercise 11 at the end of this article).

3.3.6. Cg Fragment Profile Selection

myCgFragmentProfile = cgGLCet Lat est Profi | e(CG_G._FRAGVENT);
cgG@.Set Opt i mal Opt i ons(myCgFragmentProfile);
checkForCgError("selecting fragment profile");

We select our fragment profile in the same manner we used to select ourpvefitex
The only difference is we pass the GL_FRAGVENT parameter when calling
cgG.Cet Latest Profil e.

Cg supports a number of fragment profiles. These are the fragment profikstly
supported by Cg 1.4 for OpenGlG_PROFI LE_FP40 corresponds to thigp40 vertex
program profile for thew_f ragnment _pr ogr an2 OpenGL extension (providing full
access to the fragment processing features of NVIDIA’s GeForcaed &P Us such as
per-fragment dynamic branchingdG_PROFI LE_FP30 corresponds to thiep30 vertex
program profile for thew_f ragment _pr ogr amOpenGL extension (providing full access
to the fragment processing features of NVIDIA’'s GeForce FX GPUSs)

CG_PROFI LE_ARBFP1 corresponds to the bf p1 fragment program profile for the

ARB_f ragment _progr amOpenGL extension (a multi-vendor OpenGL standard,
supported by both NVIDIA and ATI)CG_PROFI LE_FP20 corresponds to thgp20 vertex
program profile for theéw_t ext ure_shader, NV_t ext ure_shader 2,

14

NV_regi st er _conbi ners, and NV_r egi st er _conbi ner s2 OpenGL extensions (for
NVIDIA’s GeForce3, GeForce4 Ti, and later GPUS).

As in the vertex profile case,gG.Set Opt i mal Opt i ons informs the compiler about
specific hardware limits relevant to fragment profiles. For example, wihanGQpenGL
implementation supports thg1 _dr aw_buf f er s extension, the

cgG.Set Opt i mal Opt i ons informs the compiler of this fact so the compiler can know
how many color buffers are actually available when compiling for fragprefites that
support output multiple color buffers. Other limits such ag\H®ef r agment _pr ogr am
limit on texture indirections are likewise queried so the compiler is ap¥ahes limit.
The maximum number of texture indirections the GPU can support may require the
compiler to re-schedule the generated instructions around this limit. Other pnafde |
include the number of texture image units available, the maximum number of teegporari
and constants allowed, and the static instruction limit.

3.3.6.1. Fragment Program Creation and Loading

myCgFragmentProgram =
cgCr eat ePr ogr anfronti | (
myCgContext, /* Cg runtime context */

CG_SOURCE, [* Program in human-readable form */
myFragmentProgramFileName, /* Name of file containing program */
myCgFragmentProfile, [* Profile to try */
myFragmentProgramName, [* Entry function name */

NULL); /* No extra compiler options */

checkForCgError("creating fragment program from f ile");

cgG.LoadPr ogr am(myCgFragmentProgram);
checkForCgError("loading fragment program");

We create and load the fragment program in much the same manner as the vertex
program.

3.3.6.2. Fragment Program Parameter Handles

myCgFragmentParam_ambient =
cgGet NanmedPar anet er (myCgFragmentProgram, "ambient”);
checkForCgError("getting ambient parameter");

myCgFragmentParam_LMd =
cgGet NarmredPar anet er (myCgFragmentProgram, "LMd");
checkForCgError("getting LMd parameter");

myCgFragmentParam_LMs =
cgGet NarredPar anet er (myCgFragmentProgram, "LMs");
checkForCgError("getting LMs parameter");

myCgFragmentParam_normalMap =
cgCet NanmedPar anet er (myCgFragmentProgram, "normalMap");
checkForCgError("getting normalMap parameter");

myCgFragmentParam_normalizeCube =

cgGet NarredPar anet er (myCgFragmentProgram, "normalizeCube");
checkForCgError("getting normalizeCube parameter");

15

myCgFragmentParam_normalizeCube2 =
cgGet NarredPar anet er (myCgFragmentProgram, "normalizeCube2");
checkForCgError("getting normalizeCube2 parameter ");

We initialize input parameter handles in the same manner as done for veat@e{gar
handles.

3.3.6.3. Setting OpenGL Texture Objects for Sampler Parameters

cgG.Set Text ur ePar anet er (myCgFragmentParam_normalMap,
TO_NORMAL_MAP);
checkForCgError("setting normal map 2D texture");

cgG.Set Text ur ePar anet er (myCgFragmentParam_normalizeCube,
TO_NORMALIZE_VECTOR_CUBE_MAP);
checkForCgError("setting 1st normalize vector cub e map");

cg@.Set Text ur ePar anet er (myCgFragmentParam_normalizeCube2,
TO_NORMALIZE_VECTOR_CUBE_MAP);
checkForCgError("setting 2nd normalize vector cub e map");

Parameter handles for sampler parameters need to be associated with @xd¢ure
objects. The firstgG.Set Text ur ePar anet er call associates thed NORMVAL_MAP texture
object with thery CgFr agment Par am nor mal Map parameter handle.

Notice how therO NORVALI ZE_VECTOR_CUBE_MAP texture object is associated with the
two distinct sampler parametersy nal i zeCube andnor nal i zeCube2. The reason this
is done is to support older DirectX 8-class hardware such as the GeForce3 antkGeF
Ti. These older DirectX 8-class GPUs must sample the texture asdoeitite given
texture unit and that unit’s corresponding texture coordinate seb(dythat texture
coordinate set). In order to support DirectX 8-class profiles (namely), the

C8E4f _specsSurf fragment program is written in such a way that the texture units
associated with the two 3D vectors to be normalizedht Di r ect i on andhal f Angl e)

are each bound to the same “normalization vector” cube map. If there was no desire to
support older DirectX 8-class hardware, fragment programs targeting theyemanal
DirectX 9-class profiles (namelyy bf p1 andf p30) could simply sample a single
“normalization vector” texture unit.

Alternatively, the Cg fragment program could normalize the 3D lighting vecitrgive

nor mal i ze Cg standard library routine (see Exercise 5 at the end of this article), but for a
lot of current hardware, a “normalization vector” cube map is faster and tlae extr
precision for a mathematical normalize function is not crucial for lighting.

16

3.3.7. Start Event Processing

gl ut Mai nLoop();
return O; /* Avoid a compiler warning. */

}

GLUT, OpenGL, and Cg are all initialized now so we can start GLUT event pnogessi
This routine never returns. When a redisplay of the GLUT window created esarlier i
needed, thdi spl ay callback is called. When a key press occurs in the window, the
keyboar d callback is called.

3.4. Displaying the Window

Earlier in the code, we forward declared dihnepl ay callback. Now it’s time to discuss
what thedi spl ay routine does and how exactly we render our bump-mapped torus using
the textures and Cg vertex and fragment programs we’ve loaded.

3.4.1. Rendering a 2D Mesh to Generate a Torus

In the course of updating the window, thepl ay callback invokes ther awrl at Pat ch
subroutine. This subroutine renders a flat 2D mesh with immediate-mode OpenGL
commands.

[* Draw a flat 2D patch that can be "rolled & bent" into a 3D torus by
a vertex program. */
voi d
drawFlatPatch(fl oat rows, fl oat columns)
{
const fl oat m = 1.0f/columns;
const fl oat n= 1.0ffrows;
intij;
for (i=0; i<columns; i++) {
gl Begi n(G._QUAD_STRI P);
for (j=0; j<=rows; j++) {
gl Vert ex2f (i*m, j*n);
gl Vert ex2f ((i+1)*m, j*n);

gl Vert ex2f (i*m, 0);
gl Vert ex2f ((i+1)*m, 0);
gl End();

}
}

The mesh consists of a number of adjacent quad stripsC8EBe t or us vertex
program will take these 2D vertex coordinates and use them as parametrinatesrttir
evaluating the position of vertices on a torus.

Nowadays it's much faster to use OpenGL vertex arrays, particulaHyestex buffer
objects, to render geometry, but for this simple demo, immediate mode rendering is
easier.

17

Figure 8-7 fromThe Cg Tutoriais replicated to illustrate how a 2D mesh could be
procedurally “rolled and bent” into a torus by a vertex program.

3.4.2. The Display Callback

static voiddisplay(void)
{

const fl oat outerRadius = 6, innerRadius = 2;
const int sides = 20, rings = 40;

const fl oat eyeRadius = 18.0;

const fl oat eyeElevationRange = 8.0;

f | oat eyePosition[3];

gl d ear (GL_COLOR BUFFER BI T| GL_DEPTH BUFFER BI T);

Thedi spl ay callback has a number of constants that control the torus size and
tessellation and how the torus is viewed.

eyePosition[0] = eyeRadius * si n(myEyeAngle);
eyePosition[1] = eyeElevationRange * si n(myEyeAngle);
eyePosition[2] = eyeRadius * cos(myEyeAngle);

gl Loadl denti ty();

gl uLookAt (

eyePosition[0], eyePosition[1], eyePosition[2],

0.0,0.0, 0.0, /* XYZ view center */

0.0, 1.0, 0.0); /* Up is in positive Y direction */

The viewing transform is re-specified each frame. The eye position istaofunf
nmyEyeAngl e. By animating this variable, the viewer rotates around the torus with a
sinusoidally varying elevation. Because specular bump mapping is view-depe¢heent
specular lighting varies over the torus as the viewer rotates around.

18

3.4.2.1. Binding, Configuring, and Enabling the Vertex Program

cgG.Bi ndPr ogr am(myCgVertexProgram);
checkForCgError("binding vertex program™);

cg@.Set St at eMat ri xPar anet er (myCgVertexParam_modelViewProj,
CG_GL_MODELVI EW PRQJECTI ON_MATRI X,
CG_GL_MATRI X_| DENTI TY);
checkForCgError("setting modelview-projection mat rix");
cg@.Set Par anet er 3f (myCgVertexParam_lightPosition, -8, 0, 15);
checkForCgError("setting light position™);
cgG@.Set Par anet er 3f v(myCgVertexParam_eyePosition, eyePosition);
checkForCgError("setting eye position");
cgG.Set Par anet er 2f (myCgVertexParam_torusinfo, outerRadius, innerRadiu s);
checkForCgError("setting torus information™);

cgG.Enabl ePr of i | e(myCgVertexProfile);
checkForCgError("enabling vertex profile");

Prior to rendering the 2D mesh, we must bind to the vertex program, set the various input
parameters used by the program with the parameter handles, and then enable the
particular profile. Underneath the covers of these OpenGL-specific Cgesutine

necessary OpenGL commands are invoked to configure the vertex program with its
intended parameter values.

Rather than specifying the parameter value explicitly as withg@ieSet Par anet er
routines, thegGLSet St at eMat ri xPar anet er call binds the current composition of the
modelview and projection matrices (specified earlieglhyookAt and

gl uPer spect i ve commands respectively) to thedel Vi ewPr oj parameter.

One of the really nice things about the CgGL runtime is it saves you from having to know
the details of what OpenGL routines are called to configure use of your teg aed

fragment programs. Indeed, the required OpenGL commands can very considerably
between different profiles.

19

3.4.2.2. Binding, Configuring, and Enabling the Fragment Program

cgG.Bi ndPr ogr am(myCgFragmentProgram);
checkForCgError("binding fragment program);

cgG@.Set Par anet er 4f v(myCgFragmentParam_ambient, myAmbient);
checkForCgError("setting ambient");

cgG.Set Par anet er 4f v(myCgFragmentParam_LMd, myLMd);
checkForCgError("setting diffuse material");

cg@.Set Par anet er 4f v(myCgFragmentParam_LMs, myLMs);
checkForCgError("setting specular material");

cgGLEnabl eText ur ePar anet er (myCgFragmentParam_normalMap);
checkForCgError("enable texture normal map");
cgGLEnabl eText ur ePar anet er (myCgFragmentParam_normalizeCube);

checkForCgError("enable 1st normalize vector cube map");
cgG.Enabl eText ur ePar anet er (myCgFragmentParam_normalizeCube?2);
checkForCgError("enable 2nd normalize vector cube map");

cgGLEnabl ePr of i | e(myCgFragmentProfile);
checkForCgError("enabling fragment profile");

The fragment program is bound, configured, and enabled in much the same manner with
the additional task of enabling texture parameters agtiEnabl eText ur ePar anet er
to ensure the indicated texture objects are bound to the proper texture units.

Without you having to know the detaitgyGLEnabl eText ur ePar anet er calls

gl Acti veText ur e andgl Bi ndText ur e to bind the correct texture object (specified
earlier withcgGLSet Text ur ePar anet er) into the compiled fragment program’s
appropriate texture unit in the manner required for the given profile.

3.4.2.3. Render the 2D Mesh

drawFlatPatch(sides, rings);

With the vertex and fragment program each configured properly, now render the flat 2D
mesh that will be formed into a torus and illuminated with specular and diffuse bump

mapping.
3.4.2.4. Disable the Profiles and Swap

cg@.Di sabl eProf i | e(myCgVertexProfile);
checkForCgError("disabling vertex profile");

cgGL.Di sabl ePr of i | e(myCgFragmentProfile);
checkForCgError("disabling fragment profile");

gl ut SwapBuf f er s();
}

While not strictly necessary for this demo because just one object is rendefradnger
after rendering the 2D mesh, the profiles associated with the vertex pragtam a

20

fragment program are each disabled. This way you could perform conventional OpenGL
rendering. After using the OpenGL-specific Cg runtime, be careful nostonashow
OpenGL state such as what texture objects are bound to what texture units.

3.5. Keyboard Processing

Along with thedi spl ay callback, we also forward declared and registereddiieoar d
callback. Now it's time to see how the demo responses to simple keyboard input.

3.5.1. Animating the Eye Position

static voi d advanceAnimation(voi d)

myEyeAngle += 0.05f;
i f (myEyeAngle > 2*3.14159)
myEyeAngle -= 2*3.14159;
gl ut Post Redi spl ay();
}

In order to animate the changing eye position so the view variesj\taeceAni mat i on
callback is registered as the GLUT idle function. The routine advanegsAngl e and
posts a request for GLUT to redraw the window witht Post Redi spl ay. GLUT calls
the idle function repeatedly when there are no other events to process.

3.5.2. The Keyboard Callback

static voidkeyboard(unsigned charc, intx, inty)

{

static int animating =0;

switch (c){

case'"

animating = lanimating; I* Toggle */
gl ut I dl eFunc(animating ? advanceAnimation : NULL);
br eak;

The space bar toggles animation of the scene by registering and dexiregithe
advanceAni mat i on routine as the idle function.

case 27: [* Esc key */
cgDest r oyPr ogr ammyCgVertexProgram);
cgDest r oyPr ogr am(myCgFragmentProgram);
cgDest r oyCont ext (myCgContext);
exi t (0);
br eak;
}
}

The Esc key exits the demo. While it is not necessary to do so since the demngs exiti
the calls tagDest r oyPr ogramandcgDest r oyCont ext deallocate the Cg runtime
objects, along with their associated OpenGL state.

21

4. The Demo in Action

The images below show the rendered bump-mapped torus initially (left) and while
animating (right).

M cg humpdemo M co bumpdemo

5. Conclusions

This tutorial presents a complete Cg bump mapping demo written in ANSI C and
rendering with OpenGL, relying on two of the actual Cg vertex and fragmenmaprsg
detailed inThe Cg Tutorial | hope this tutorial “fills in the gaps” for those intregid

Tutorial readers now inspired to integrate Cg technology into their graphics application.
Thecg_bunpdeno demo works on ATl and NVIDIA GPUs (and GPUs from any other
vendor that support the standard, multi-vendor vertex and fragment program extensions).
The demo is cross-platform as well, supporting Windows, OS X, and Linux systems.

The time you invest integrating the Cg runtime to your graphics applicatiomeisviell

spent because of the productivity and cross-platform support you unleash by writing
shaders in Cg rather than resorting to low-level 3D rendering commands orlevaigh
shading language tied to a particular 3D API. With Cg, you can write shadevsark

with two implementations of the same basic language (Cg & HLSL), two ridizriag
programming interfaces (OpenGL & Direct3D), three operating systéimelows, OS

X, and Linux), and the two major GPU vendors (ATl & NVIDIA—and any other vendors
supporting DirectX 9-level graphics functionality).

Finally, Cg has evolved considerably since Randy and | WilnéeCg Tutorial Cg 1.2
introduced a “sub-shader” facility allowing you to write shaders in Cg in @ modular
fashion. And be sure to explore Cg 1.4’s updated implementation of the CgFX meta-
shader format (compatible with Microsoft’s DirectX 9 FX format) to @satate non-
programmable state, semantics, hardware-dependent rendering techniques, and support
for multiple passes.

22

Exercises

Just asThe Cg Tutoriaprovides exercises at the end of each chapter, here are some
exercises to help you expand on what you've learned.

Improving the Shading

1.

Support two lights. You'll need a second light position uniform parameter and
your updated vertex program must output a second tangent-space light position.
Example 5-4 inThe Cg TutoriaWwill give you some ideas for supporting multiple
lights. However, Example 5-4 is for tvper-vertexights; for this exercise, you
want twoper-fragmentights combined with bump mappingdint: If you add
multiple lights, you might want to adjust down the valuesngfient , LMd, and

LMs to avoid an “over bright” scene.

Support gositionallight (the current light is directional). Add controls so you
can interactively position the light in the “hole” of the torus. Section 5Thef
Cg Tutorialbriefly explains the distinction between directional and positional
lights.

Add geometric self-shadowing to the fragment program.

a. Clamp the specular to zero if taeomponent of the tangent-space light
direction is non-positive to better simulate self-shadowing (this is a
situation where the light is “below” the horizon of the torus surface). See
section 8.5.3 oThe Cg Tutoriafor details about geometric self-
shadowing.

b. Further tweak the geometric self-shadowing. Instead of clamping,
modulate withsaturate(8*lightDirection.z) so specular highlights
don't “wink off” when self-shadowing occurs but rather drop off. When
the scene animates, which approach looks better?

Change the specular exponent computation to ugsihstandard library

function instead of successive multiplication (you'll fgegk is only available on
more recent DirectX 9-class profiles suchadgpl andfp30 , notfp20).

Provide the specular exponent as a uniform parameter to the fragment program.

Instead of using normalization cube maps, usedhealize standard library
routine? Does the lighting change much? Does the performance change?

Rather than compute the tangent-space half-angle vector at each vertex and
interpolate the half-angle for each fragment, compute the view vector at each
vertex; then compute the half-angle at each fragment (by normalizing thaf sum
the interpolated normalized light vector and the interpolated normalized view
vector). Does the lighting change much? Does the performance change?

Advanced: Read section 8.4 dhe Cg Tutoriabnd implement bump mapping
on an arbitrary textured polygonal mesh. Implement this approach to bump map
an arbitrary textured model.

23

8. Advanced: Read section 9.4 dthe Cg Tutoriabnd combine bump mapping
with shadow mapping.

Improving the Cg Runtime Usage
9. Provide command line options to specify what file names contain the vertex and
fragment programs.

10. Provide better diagnostic messages when errors occur.

11.Use the Cg runtime to query the uniform parameter names and then prompt the
user for values for the various parameters (rather than having the paranmetsr na
and values hard coded in the program itself).

12.Rather than using global variables for each vertex and fragment progra) obje
support loading a set of vertex and fragment programs and allow the usertto selec
the current vertex and current fragment program from an interactive menu.

24

Appendix A: C8E6v_torus.cg Vertex Program

voi d C8E6v_torus(f | oat 2 parametric : POSI TI ON,
out fl oat 4 position : PCSI TI ON,
out fl oat2 oTexCoord : TEXCOORDO,
out fl oat 3 lightDirection : TEXCOORDL1,
out fl oat 3 halfAngle : TEXCOORD2,
uni form f 1 oat 3 lightPosition, /I Object-space
uni form f | oat 3 eyePosition, /I Object-space

uni form f | oat 4x4 modelViewProj,
uni form f | oat 2 torusinfo)

const fl oat pi2=6.28318530; /I 2 times Pi
/I Stetch texture coordinates counterclockwise
/I over torus to repeat normal map in 6 by 2 patt ern
fl oat M = torusinfo[0];
fl oat N = torusinfo[1];
oTexCoord = parametric * f | oat 2(-6, 2);
/I Compute torus position from its parameteric eq uation
fl oat cosS, sinS;
si ncos(pi2 * parametric.x, sinS, cosS);
fl oat cosT, sinT;
si ncos(pi2 * parametric.y, sinT, cosT);
f | oat 3 torusPosition = fl oat 3((M+ N * cosT) * cosS,
(M + N *cosT) * si ns,
N * sinT);
position = mul (modelViewProj, f | oat 4(torusPosition, 1));
/I Compute per-vertex rotation matrix
f | oat 3 dPds = float3(-sinS*(M+N*cosT), cosS*(M+N*cosT), 0);
fl oat 3 norm_dPds = nornal i ze(dPds);
float3 normal= fl oat 3(cosS * cosT, sinS * cosT, sinT);
float3dPdt= cross(normal, norm_dPds);
f | oat 3x3 rotation = f I oat 3x3(norm_dPds,
dPdt,
normal);
/I Rotate object-space vectors to texture space
f | oat 3 eyeDirection = eyePaosition - torusPosition;
lightDirection = lightPosition - torusPosition;

lightDirection = nmul (rotation, lightDirection);
eyeDirection = mul (rotation, eyeDirection);
halfAngle = nor mal i ze(nor mal i ze(lightDirection) +

nor mal i ze(eyeDirection));

25

Appendix B: C8E4f specSurf.cg Fragment Program

fl oat 3 expand(fl oat3v){ return (v-0.5)*2; }

voi d C8E4f_specSurf(fl oat 2 normalMapTexCoord : TEXCOORDO,
f | oat 3 lightDirection : TEXCOORDL1,
f | oat 3 halfAngle : TEXCOORD2,

out fl oat4 color: COLOR,

uni form fl oat ambient,

uni form fl oat 4 LMd, // Light-material diffuse
uni form fl oat4 LMs, // Light-material specular
uni f or m sanpl er 2D normalMap,

uni f or m sanpl er CUBE normalizeCube,

uni f or m sanpl er CUBE normalizeCube?2)

/I Fetch and expand range-compressed normal
fl oat 3 normalTex = t ex2D(normalMap, normalMapTexCoord).xyz;
f I oat 3 normal = expand(normalTex);
/I Fetch and expand normalized light vector
f I oat 3 normLightDirTex = t exCUBE(normalizeCube,
lightDirection). Xyz;
f I oat 3 normLightDir = expand(normLightDirTex);
/I Fetch and expand normalized half-angle vector
f | oat 3 normHalfAngleTex = t ex CUBE(normalizeCube2,
halfAngle).xyz;
f I oat 3 normHalfAngle = expand(normHalfAngleTex);

/I Compute diffuse and specular lighting dot prod ucts
f | oat diffuse = sat ur at e(dot (normal, normLightDir));
fl oat specular = sat ur at e(dot (normal, normHalfAngle));
/I Successive multiplies to raise specular to 8th power
f | oat specular2 = specular*specular;
f | oat speculard = specular2*specular2;
f | oat specular8 = specular4*specular4;

color = LMd*(ambient+diffuse) + LMs*specular8;

}

26

