CMFFormController:

Everything You Ever Wanted To Know But Were Afraid
to Ask

Geoff Davis
Plone Conference, 2004
geoff@geoffdavis.net

What is CMFFormController?
]

I NOT a way to autogenerate forms!

- (You're thinking of Formulator — that's a different
talk)

What is CMFFormController?
]

I Framework used throughout Plone
— Glue that binds forms to scripts and vice versa
- Simplifies coding of forms / form handling scripts
- Manages transitions between forms and scripts

What Problems Does It Solve?

| Helps make products customizable in a way that is
less likely to break when you upgrade

| Without FormController

The script invoked by submitting a form is hardcoded into
the form

The page displayed after invoking a script is hardcoded into
the script

If you want to change what happens after a form is
submitted, you have to customize the form / script.

Customizations can break when you upgrade!

What Problems Does It Solve?

I With FormController

Things that are likely to change on upgrade
(contents of scripts, forms) are separated
from things that are less likely to change

The script invoked by submitting a form can be
specified in a .metadata file

The page displayed after invoking a script can be
specified in a .metadata file

Metadata can be overridden in the ZMI

What Problems Does it Solve?
]

| Provides better implementation of the Model / View /
Controller (MVC) paradigm:
- Model = Zope objects
- View = page templates, DTML
— Controller = CMFFormController + python scripts
| FormController separates controller logic from views

I Makes it unnecessary for your DreamWeaver person
to know what scripts a form should call

Conceptualizing
—

| Old:

- my_form: invoke my_validation_script
— my_validation_script: check some stuff. on success, call my_script
- my_script: do some stuff. show my page
I New:
- my_form: generic form

I Metadata:

— validate using my_validation_script
- If “success”, call my_script

- my_verification_script: Check some stuff. Return “success”

— my_script: Do some stuff. Return “success”
I Metadata:
- If “success”, show my page

Conceptualizing
—

| Atomic units are:
— [form + chain of validation scripts]
— [script]

I Return values of these units are states, not explicit
directives to show a page / call a script

| FormController takes care of the transitions

I FormController implements the Controller/State
design pattern (More buzzwords!)

Why All This Is Useful
.

| Example #1:

- By default, after you edit a Plone document, you
are shown a view of the document

- Suppose, instead, you want to be taken to /
index_html

- With FormController, you can make the change
by modifying a single item in the ZMl

- If document_edit.py is changed in a Plone
upgrade, the changes won'’t break your site

Why All This Is Useful
.

| Example #2:

- Suppose you want to add a spell checking script
and a correction page before the document_edit
script

- With FormController you can programmatically
iInsert the new page + script without changing
either document_edit _form or document_edit

- Forms + scripts are now like a linked list — you
can chain new forms and scripts together and
iInsert and remove things programmatically

Questions?
]

| Any questions before we start coding an
example?

How It’s Done
N

I FormController uses specially modified page
templates and python scripts

- Page Templates (.pt files) are replaced by Controller Page
Templates (.cpt files)

- Python Scripts (.py files) are replaced by Controller Python
Scripts (.cpy files) and Validator Python Scripts (.vpy files)

| If you don’t use.cpt/ .cpy / .vpy files, everything
works as before. FormController is strictly optional!

My First ControllerPageTemplate
—

| We're going to create a web application that
1) Prompts a user for two integers
2) Verifies that the user enters only integers
3) Displays the sum of the entered integers

| Follow along! Grab code snippets from
http://plone.org/Members/geoff/

add_numbers form
-

| Step 1: Create the form
- In the ZMI, add a new Controller Page Template
— Give it ID “add_numbers” and click Add and Edit

<html>
<body>
<form action="" method=%“post”>
<p>Enter two integers.</p>
First: <input type=“text” name=“‘nl” value=%“" />

Second: <input type=“text” name=“n2” value=“" />

<input type=“submit” name=“submit” wvalue=“Submit” />
</form>
</body>
</html>

add_numbers form
-

Now make changes to the form for CMFFormController:
2) Make the form submit to itself

3) Add the hidden value form.submitted. This is a flag that tells the
form that it needs to process the values in the request.

<form

tal:attributes="action python:here.absolute url()+’/’+template.id”
method=%“post”>

<input type=“hidden” name=“form.submitted” value=“1" />

<p>Enter two integers.</p>

First: <input type=“text” name=%“nl” value=“" />

Second: <input type=“text” name=“"n2” value=%“" />

<input type=“submit” name=“submit” value=“Submit” />
</form>

add_numbers_validate
-

| Step 2: Create a validator for the form

- In the ZMI, add a new Controller Validator

- Give it ID “add_numbers_validate” and click Add
and Edit

- Enter title “Validate add_numbers form”
- Enter parameters "n1, n2”

add_numbers_validate code
-

Make sure that a value was entered for the first integer:

if not nl:
state.setError('nl', 'Please enter a value')

state = built-in object that carries the state for the current action
- Holds the status of the validation (e.g., success or failure)
- Holds error messages
- Holds status messages that should be displayed after validation

else:
try:
nl = int (nl)
except (ValueError, TypeError):
state.setError('nl', 'Please enter an integer')

state.setError method:
- First parameter = id of variable associated with error
- Second parameter = error message

Repeat tests for n2

add_numbers_validate
-

Validators return a status value via the state object
| Typical status values are ‘success’ and ‘failure’
| Validators must return the state object

| Default initial status is ‘success’
|

Validators can be chained together. Status is passed along the chain
via the state object.

1if state.getErrors /() : # an error has occurred
state.setStatus ('failure')

return state.set(portal_status_message=\
'"Please correct the errors shown')

return state # no errors - always return the state

add_numbers_validate
-

if not nl:
state.setError('nl', 'Please enter a value')
else:
try:
nl = int (nl)
except (ValueError, TypeError):
state.setError('nl', 'Please enter an integer')

if not n2:
state.setError('n2', 'Please enter a value')
else:
try:
n2 = int (n2)
except (ValueError, TypeError):
state.setError('n2', 'Please enter an integer')

if state.getErrors(): # an error has occurred
state.setStatus ('failure') # set status to failure
return state.set (portal status message='Please correct the errors shown')

return state # no errors -- always return the state object

Wiring things together
—

I Now we need to tell FormController that
add _numbers_validate is a validator for the
add_numbers form

I In the ZMI, go to the add_numbers form
I Click the Validators tab

| Add a default validator:
— Context_type: Any
— Button: leave blank
— Validators: add _numbers_validate

What is all this stuff?
G

| Default Validator vs Validator Override
- Default validators: Validators created by a Product creator /
validators specified in a .metadata file

— OQOverride: place for changes made by a 3rd party product

I Context type: Lets you specify different validators depending
on the context object’s type. Especially useful in Archetypes,
since the same base_edit form is used for editing all context

types.

| Button: Lets you specify different validators depending on the
button pressed.

I Validators: List of scripts used to validate the form. Scripts are
iInvoked in order.

Testing the Form
-

| Go to the add _numbers form

| Fill in 2 numbers, submit
- Exception!
I Fill iIn some non-integers, submit
- We get the form back, but no error messages

I We have a little more work to do

Actions
]

Il Need to tell FormController what to do after
validation

I In the ZMI, go to the add_numbers form
I Click the Actions tab

I Under default action, enter
- Status: success
— Context type: Any
- Button: (leave blank)
— Action type: traverse_to
— Action argument: string:add_numbers_script

What is all this stuff?

Default Action vs Action Override

- Default actions: Actions created by a Product creator / actions specified in

a .metadata file

— Override: place for changes made by a 3rd party product
Status code: Lets you specify different actions depending on the
status code returned by a script / form validators
Context type: Lets you specify different actions depending on the
context object’s type.
Button: Lets you specify different actions depending on the button
pressed.
Action type: Should we traverse to the next form/script (and preserve
the contents of the REQUEST) or redirect to it?

Action argument: A TALES expression that specifies the next thing to
do.

What we have done so far
G

I We have told FormController:

- when validation succeeds, call
add_numbers_script

| By default, failure’ status results in traversal
to the form submitted.

— Can specify this explicitly if you want

- Can override if you need to (e.g. errors send one
to a special error page)

Showing Error Messages

Now we need to modify the form so that it displays
any error messages generated by validation

The state object is passed to the form in options.
Usually the only thing we need from the state object
Is the error messages

Get the messages as a dictionary using the following
TALES expression:

- options/state/getErrors

add_numbers form
-

<p tal:define="msg request/portal status message|nothing”
tal:condition="msg”
tal:content="msg” />
<form
tal:define=“errors options/state/getErrors”
tal:attributes=“action python:here.absolute url()+’/’+template.id”
method="put”>
<input type=“hidden” name=“form.submitted” value=“1" />
<p>Enter two integers.</p>
<p tal:define=“err errors/nl|nothing” tal:condition=“err”
tal:content="err” />
First: <input type=“text” name=“nl"
tal:attributes=“value request/nl|nothing” />

<p tal:define=“err errors/n2|nothing” tal:condition=“err”
tal:content="err” />
Second: <input type=“text” name=“n2” value=%“" />

tal:attributes=“value request/n2|nothing” />

<input type=“submit” name=“submit” value=“Submit” />
</form>

Testing, testing, 1, 2, 3...
o]

I Now try testing the add_numbers form

- You should see error messages if you enter bad
numbers

- You should get an error if you enter integers (we
haven’t written add _numbers_script yet!)

add_numbers_script
-

| Step 3: Create a script to process the values
submitted
- In the ZMI, add a new Controller Python Script

- Give it ID "add_numbers_script” and click Add
and Edit

- Enter title “Process add _numbers form”
- Enter parameters “n1, n2”

add_numbers_script
-

| First convert the form values to integers
nl = int(nl)
n2 = int(n2)

| Next store the value in the state object
- Keyword arguments set in the state object get passed along,
I in the REQUEST if you do a traversal, or
I in the query string if you do a redirect
state.set (n=nl+n2)
| Specify the next action.
- Action can be specified in the action tab
- state.setNextAction provides a shortcut
state.setNextAction ('traverse to:string:add numbers results')

| Return the state (always return the state!)

return state

Showing the Results
—

| Step 4: Create a page to show the results

- In the ZMI, add a new Page Template
- Give it ID “add_numbers_results” and click Add and Edit

<html>
<head>
<title tal:content="template/title">The title</title>
</head>
<body>
<p tal:content="request/n|nothing" />
</body>
</html>

Testing
-

I In the ZMI, click on the add _numbers form
| Click the test tab

| Enter some non-integers

- Should get nice error messages
| Enter some integers

- Should get a sum

Adding Complexity
c.-

I Task: Add a second button that computes a
difference of two numbers.

I Method:

1) Rename the existing button and add the
second

<lnput type=“submit” name=%“form.button.add”
value="“Add” />

<lnput type=“submit” name=%“form.button.subtract”
value=“Subtract” />

2) Specify validators and actions for buttons
“add” and “subtract”

Gotcha
]

I In IE, you can submit a page with a carriage
return. No button will register as having
been pressed.

I You need to always specify validators / action
for any button. This controls what happens
when a form is submitted with CR.

I FormController will log a warning if you forget
to do this in a .metadata file (Plone 2.0.4
generates lots of these warnings)

Development on the File System
c—

| Don’t develop in the ZMI!

| File system procedure for FormController is
very similar.

| Use .cpt, .vpy, and .cpy files

| Specify actions and validators in a .metadata
file

.metadata
N

| Special extra sections to your metadata file
[default]
title=My Title
[validators]
validators=my validator
[actions]
action.success=string:my script

| Gotcha: If you create a .metadata file that can't be
parsed, it can prevent an entire skin from loading.
You will see an empty directory view.

More Detalls
7

| Fairly complete documentation in the ZMI

| Go to portal form_controller, click on the
Documentation tab

