
Sun VirtualBox R©

Programming Guide and
Reference

Version 2.2.0

c© 2004-2009 Sun Microsystems, Inc.

http://www.virtualbox.org

Contents

1 Introduction 13
1.1 Modularity: the building blocks of VirtualBox 13
1.2 Two guises of the same “Main API”: the web service or COM/XPCOM . . 14
1.3 About web services in general . 16
1.4 Running the web service . 16

1.4.1 Command line options of vboxwebsrv 17
1.4.2 Authenticating at web service logon 18
1.4.3 Solaris host: starting the web service via SMF 19

2 The object-oriented web service (OOWS) 20
2.1 The object-oriented web service for JAX-WS 20

2.1.1 Preparations . 20
2.1.2 Getting started: running the sample code 20
2.1.3 Logging on to the web service 21
2.1.4 Obtaining basic machine information. Reading attributes 22
2.1.5 Changing machine settings. Sessions 22
2.1.6 Starting machines . 23
2.1.7 Object management . 24

2.2 The object-oriented web service for Python 24

3 Using the raw web service with any language 25
3.1 Raw web service example for Java and Axis 25
3.2 Raw web service example for Perl . 26
3.3 Programming considerations for the raw web service 27

3.3.1 Fundamental conventions . 27
3.3.2 Example: A typical web service client session 28
3.3.3 Managed object references . 29
3.3.4 Some more detail about web service operation 30

4 Using the Main API documentation for web service clients 33

5 The VirtualBox COM/XPCOM API 34
5.1 Python XPCOM API . 34
5.2 C++ COM API . 34
5.3 C binding to XPCOM API . 35

5.3.1 Getting started . 36
5.3.2 XPCOM initialization . 36

2

Contents

5.3.3 XPCOM method invocation . 36
5.3.4 XPCOM attribute access . 37
5.3.5 String handling . 38
5.3.6 XPCOM uninitialization . 38
5.3.7 Compiling and linking . 39

6 The VirtualBox shell 40

7 Main API change log 41
7.1 Incompatible API changes with version 2.1 41
7.2 Incompatible API changes with version 2.2 42

8 License information 44

9 Classes (interfaces) 45
9.1 IAppliance . 45

9.1.1 Attributes . 46
9.1.2 getWarnings . 47
9.1.3 importMachines . 47
9.1.4 interpret . 47
9.1.5 read . 48
9.1.6 write . 48

9.2 IAudioAdapter . 48
9.2.1 Attributes . 48

9.3 IBIOSSettings . 49
9.3.1 Attributes . 49

9.4 IConsole . 50
9.4.1 Attributes . 51
9.4.2 adoptSavedState . 53
9.4.3 attachUSBDevice . 54
9.4.4 createSharedFolder . 54
9.4.5 detachUSBDevice . 54
9.4.6 discardCurrentSnapshotAndState 55
9.4.7 discardCurrentState . 55
9.4.8 discardSavedState . 56
9.4.9 discardSnapshot . 56
9.4.10 findUSBDeviceByAddress . 58
9.4.11 findUSBDeviceById . 58
9.4.12 getDeviceActivity . 58
9.4.13 getGuestEnteredACPIMode . 59
9.4.14 getPowerButtonHandled . 59
9.4.15 pause . 59
9.4.16 powerButton . 59
9.4.17 powerDown . 60
9.4.18 powerDownAsync . 60

3

Contents

9.4.19 powerUp . 60
9.4.20 powerUpPaused . 61
9.4.21 registerCallback . 61
9.4.22 removeSharedFolder . 61
9.4.23 reset . 62
9.4.24 resume . 62
9.4.25 saveState . 62
9.4.26 sleepButton . 63
9.4.27 takeSnapshot . 63
9.4.28 unregisterCallback . 63

9.5 IConsoleCallback . 64
9.5.1 onAdditionsStateChange . 64
9.5.2 onCanShowWindow . 64
9.5.3 onDVDDriveChange . 64
9.5.4 onFloppyDriveChange . 64
9.5.5 onKeyboardLedsChange . 65
9.5.6 onMouseCapabilityChange . 65
9.5.7 onMousePointerShapeChange 65
9.5.8 onNetworkAdapterChange . 65
9.5.9 onParallelPortChange . 65
9.5.10 onRuntimeError . 66
9.5.11 onSerialPortChange . 67
9.5.12 onSharedFolderChange . 67
9.5.13 onShowWindow . 67
9.5.14 onStateChange . 68
9.5.15 onStorageControllerChange . 68
9.5.16 onUSBControllerChange . 68
9.5.17 onUSBDeviceStateChange . 68
9.5.18 onVRDPServerChange . 68

9.6 IDHCPServer . 69
9.6.1 Attributes . 69
9.6.2 setConfiguration . 70
9.6.3 start . 70
9.6.4 stop . 70

9.7 IDVDDrive . 70
9.7.1 Attributes . 70
9.7.2 captureHostDrive . 71
9.7.3 getHostDrive . 71
9.7.4 getImage . 71
9.7.5 mountImage . 71
9.7.6 unmount . 71

9.8 IDVDImage . 72
9.9 IDisplay . 72

9.9.1 Attributes . 72
9.9.2 drawToScreen . 72

4

Contents

9.9.3 getFramebuffer . 73
9.9.4 invalidateAndUpdate . 73
9.9.5 lockFramebuffer . 73
9.9.6 registerExternalFramebuffer . 73
9.9.7 resizeCompleted . 74
9.9.8 setFramebuffer . 74
9.9.9 setSeamlessMode . 74
9.9.10 setVideoModeHint . 74
9.9.11 setupInternalFramebuffer . 75
9.9.12 takeScreenShot . 75
9.9.13 unlockFramebuffer . 75
9.9.14 updateCompleted . 75

9.10 IFloppyDrive . 76
9.10.1 Attributes . 76
9.10.2 captureHostDrive . 76
9.10.3 getHostDrive . 76
9.10.4 getImage . 76
9.10.5 mountImage . 76
9.10.6 unmount . 77

9.11 IFloppyImage . 77
9.12 IFramebuffer . 77

9.12.1 Attributes . 77
9.12.2 copyScreenBits . 79
9.12.3 getVisibleRegion . 79
9.12.4 lock . 80
9.12.5 notifyUpdate . 80
9.12.6 operationSupported . 80
9.12.7 requestResize . 81
9.12.8 setVisibleRegion . 82
9.12.9 solidFill . 83
9.12.10unlock . 83
9.12.11videoModeSupported . 83

9.13 IFramebufferOverlay . 83
9.13.1 Attributes . 84
9.13.2 move . 84

9.14 IGuest . 84
9.14.1 Attributes . 85
9.14.2 getStatistic . 86
9.14.3 setCredentials . 86

9.15 IGuestOSType . 86
9.15.1 Attributes . 87

9.16 IHardDisk . 88
9.16.1 Attributes . 92
9.16.2 cloneTo . 94
9.16.3 compact . 95

5

Contents

9.16.4 createBaseStorage . 95
9.16.5 createDiffStorage . 95
9.16.6 deleteStorage . 96
9.16.7 getProperties . 97
9.16.8 getProperty . 97
9.16.9 mergeTo . 97
9.16.10reset . 99
9.16.11setProperties . 99
9.16.12setProperty . 99

9.17 IHardDiskAttachment . 100
9.17.1 Attributes . 100

9.18 IHardDiskFormat . 101
9.18.1 Attributes . 101
9.18.2 describeProperties . 102

9.19 IHost . 102
9.19.1 Attributes . 102
9.19.2 createUSBDeviceFilter . 104
9.19.3 findHostDVDDrive . 104
9.19.4 findHostFloppyDrive . 105
9.19.5 findHostNetworkInterfaceById 105
9.19.6 findHostNetworkInterfaceByName 105
9.19.7 findHostNetworkInterfacesOfType 105
9.19.8 findUSBDeviceByAddress . 106
9.19.9 findUSBDeviceById . 106
9.19.10getProcessorDescription . 106
9.19.11getProcessorFeature . 106
9.19.12getProcessorSpeed . 106
9.19.13insertUSBDeviceFilter . 107
9.19.14removeUSBDeviceFilter . 107

9.20 IHostDVDDrive . 107
9.20.1 Attributes . 108

9.21 IHostFloppyDrive . 108
9.21.1 Attributes . 108

9.22 IHostNetworkInterface . 109
9.22.1 Attributes . 109
9.22.2 dhcpRediscover . 111
9.22.3 enableDynamicIpConfig . 111
9.22.4 enableStaticIpConfig . 111
9.22.5 enableStaticIpConfigV6 . 111

9.23 IHostUSBDevice . 111
9.23.1 Attributes . 111

9.24 IHostUSBDeviceFilter . 112
9.24.1 Attributes . 112

9.25 IInternalMachineControl . 112
9.25.1 adoptSavedState . 112

6

Contents

9.25.2 autoCaptureUSBDevices . 112
9.25.3 beginSavingState . 113
9.25.4 beginTakingSnapshot . 113
9.25.5 captureUSBDevice . 113
9.25.6 detachAllUSBDevices . 113
9.25.7 detachUSBDevice . 114
9.25.8 discardCurrentSnapshotAndState 114
9.25.9 discardCurrentState . 114
9.25.10discardSnapshot . 114
9.25.11endSavingState . 115
9.25.12endTakingSnapshot . 115
9.25.13getIPCId . 115
9.25.14lockMedia . 115
9.25.15onSessionEnd . 115
9.25.16pullGuestProperties . 116
9.25.17pushGuestProperties . 116
9.25.18pushGuestProperty . 116
9.25.19runUSBDeviceFilters . 116
9.25.20updateState . 117

9.26 IInternalSessionControl . 117
9.26.1 accessGuestProperty . 117
9.26.2 assignMachine . 117
9.26.3 assignRemoteMachine . 118
9.26.4 enumerateGuestProperties . 118
9.26.5 getPID . 118
9.26.6 getRemoteConsole . 118
9.26.7 onDVDDriveChange . 119
9.26.8 onFloppyDriveChange . 119
9.26.9 onNetworkAdapterChange . 119
9.26.10onParallelPortChange . 119
9.26.11onSerialPortChange . 120
9.26.12onSharedFolderChange . 120
9.26.13onShowWindow . 120
9.26.14onStorageControllerChange . 121
9.26.15onUSBControllerChange . 121
9.26.16onUSBDeviceAttach . 121
9.26.17onUSBDeviceDetach . 121
9.26.18onVRDPServerChange . 122
9.26.19uninitialize . 122
9.26.20updateMachineState . 122

9.27 IKeyboard . 122
9.27.1 putCAD . 123
9.27.2 putScancode . 123
9.27.3 putScancodes . 123

9.28 IMachine . 123

7

Contents

9.28.1 Attributes . 124
9.28.2 addStorageController . 134
9.28.3 attachHardDisk . 134
9.28.4 canShowConsoleWindow . 135
9.28.5 createSharedFolder . 136
9.28.6 deleteSettings . 136
9.28.7 detachHardDisk . 137
9.28.8 discardSettings . 137
9.28.9 enumerateGuestProperties . 138
9.28.10export . 138
9.28.11findSnapshot . 138
9.28.12getBootOrder . 138
9.28.13getExtraData . 139
9.28.14getGuestProperty . 139
9.28.15getGuestPropertyTimestamp . 139
9.28.16getGuestPropertyValue . 139
9.28.17getHardDisk . 140
9.28.18getHardDiskAttachmentsOfController 140
9.28.19getNetworkAdapter . 140
9.28.20getNextExtraDataKey . 140
9.28.21getParallelPort . 141
9.28.22getSerialPort . 141
9.28.23getSnapshot . 141
9.28.24getStorageControllerByName . 142
9.28.25removeSharedFolder . 142
9.28.26removeStorageController . 142
9.28.27saveSettings . 142
9.28.28saveSettingsWithBackup . 143
9.28.29setBootOrder . 144
9.28.30setCurrentSnapshot . 144
9.28.31setExtraData . 144
9.28.32setGuestProperty . 145
9.28.33setGuestPropertyValue . 145
9.28.34showConsoleWindow . 146

9.29 IMachineDebugger . 146
9.29.1 Attributes . 146
9.29.2 dumpStats . 148
9.29.3 getStats . 148
9.29.4 injectNMI . 148
9.29.5 resetStats . 148

9.30 IManagedObjectRef . 149
9.30.1 getInterfaceName . 149
9.30.2 release . 149

9.31 IMedium . 149
9.31.1 Attributes . 151

8

Contents

9.31.2 close . 153
9.31.3 getSnapshotIds . 154
9.31.4 lockRead . 154
9.31.5 lockWrite . 155
9.31.6 unlockRead . 155
9.31.7 unlockWrite . 155

9.32 IMouse . 156
9.32.1 Attributes . 156
9.32.2 putMouseEvent . 156
9.32.3 putMouseEventAbsolute . 157

9.33 INetworkAdapter . 157
9.33.1 Attributes . 157
9.33.2 attachToBridgedInterface . 159
9.33.3 attachToHostOnlyInterface . 159
9.33.4 attachToInternalNetwork . 159
9.33.5 attachToNAT . 159
9.33.6 detach . 159

9.34 IParallelPort . 160
9.34.1 Attributes . 160

9.35 IPerformanceCollector . 161
9.35.1 Attributes . 162
9.35.2 disableMetrics . 162
9.35.3 enableMetrics . 163
9.35.4 getMetrics . 163
9.35.5 queryMetricsData . 163
9.35.6 setupMetrics . 164

9.36 IPerformanceMetric . 164
9.36.1 Attributes . 165

9.37 IProgress . 166
9.37.1 Attributes . 166
9.37.2 cancel . 168
9.37.3 waitForCompletion . 168
9.37.4 waitForOperationCompletion . 169

9.38 IRemoteDisplayInfo . 169
9.38.1 Attributes . 169

9.39 ISerialPort . 171
9.39.1 Attributes . 171

9.40 ISession . 172
9.40.1 Attributes . 174
9.40.2 close . 174

9.41 ISharedFolder . 175
9.41.1 Attributes . 176

9.42 ISnapshot . 177
9.42.1 Attributes . 178

9.43 IStorageController . 180

9

Contents

9.43.1 Attributes . 180
9.43.2 GetIDEEmulationPort . 181
9.43.3 SetIDEEmulationPort . 181

9.44 ISystemProperties . 182
9.44.1 Attributes . 182

9.45 IUSBController . 186
9.45.1 Attributes . 186
9.45.2 createDeviceFilter . 187
9.45.3 insertDeviceFilter . 187
9.45.4 removeDeviceFilter . 188

9.46 IUSBDevice . 188
9.46.1 Attributes . 188

9.47 IUSBDeviceFilter . 190
9.47.1 Attributes . 191

9.48 IVRDPServer . 193
9.48.1 Attributes . 193

9.49 IVirtualBox . 194
9.49.1 Attributes . 194
9.49.2 createAppliance . 198
9.49.3 createDHCPServer . 198
9.49.4 createHardDisk . 198
9.49.5 createLegacyMachine . 199
9.49.6 createMachine . 200
9.49.7 createSharedFolder . 201
9.49.8 findDHCPServerByNetworkName 201
9.49.9 findDVDImage . 202
9.49.10findFloppyImage . 202
9.49.11findHardDisk . 203
9.49.12findMachine . 203
9.49.13getDVDImage . 203
9.49.14getExtraData . 204
9.49.15getFloppyImage . 204
9.49.16getGuestOSType . 204
9.49.17getHardDisk . 205
9.49.18getMachine . 205
9.49.19getNextExtraDataKey . 205
9.49.20openDVDImage . 205
9.49.21openExistingSession . 206
9.49.22openFloppyImage . 207
9.49.23openHardDisk . 207
9.49.24openMachine . 208
9.49.25openRemoteSession . 208
9.49.26openSession . 209
9.49.27registerCallback . 211
9.49.28registerMachine . 211

10

Contents

9.49.29removeDHCPServer . 211
9.49.30removeSharedFolder . 212
9.49.31saveSettings . 212
9.49.32saveSettingsWithBackup . 212
9.49.33setExtraData . 213
9.49.34unregisterCallback . 214
9.49.35unregisterMachine . 214
9.49.36waitForPropertyChange . 215

9.50 IVirtualBoxCallback . 216
9.50.1 onExtraDataCanChange . 216
9.50.2 onExtraDataChange . 216
9.50.3 onGuestPropertyChange . 216
9.50.4 onMachineDataChange . 216
9.50.5 onMachineRegistered . 217
9.50.6 onMachineStateChange . 217
9.50.7 onMediaRegistered . 217
9.50.8 onSessionStateChange . 217
9.50.9 onSnapshotChange . 218
9.50.10onSnapshotDiscarded . 218
9.50.11onSnapshotTaken . 218

9.51 IVirtualBoxErrorInfo . 218
9.51.1 Attributes . 219

9.52 IVirtualSystemDescription . 220
9.52.1 Attributes . 220
9.52.2 addDescription . 221
9.52.3 getDescription . 221
9.52.4 getDescriptionByType . 223
9.52.5 getValuesByType . 223
9.52.6 setFinalValues . 223

9.53 IWebsessionManager . 224
9.53.1 getSessionObject . 224
9.53.2 logoff . 224
9.53.3 logon . 224

10 Enumerations (enums) 226
10.1 AccessMode . 226
10.2 AudioControllerType . 226
10.3 AudioDriverType . 226
10.4 BIOSBootMenuMode . 227
10.5 CIMOSType . 227
10.6 ClipboardMode . 231
10.7 DataFlags . 231
10.8 DataType . 231
10.9 DeviceActivity . 231
10.10DeviceType . 232

11

Contents

10.11DriveState . 232
10.12FramebufferAccelerationOperation . 232
10.13FramebufferPixelFormat . 232
10.14GuestStatisticType . 233
10.15HardDiskFormatCapabilities . 234
10.16HardDiskType . 234
10.17HardDiskVariant . 234
10.18HostNetworkInterfaceMediumType . 235
10.19HostNetworkInterfaceStatus . 235
10.20HostNetworkInterfaceType . 235
10.21MachineState . 236
10.22MediaState . 238
10.23MouseButtonState . 239
10.24NetworkAdapterType . 239
10.25NetworkAttachmentType . 239
10.26OVFResourceType . 240
10.27PortMode . 240
10.28ProcessorFeature . 241
10.29Scope . 241
10.30SessionState . 241
10.31SessionType . 242
10.32StorageBus . 242
10.33StorageControllerType . 242
10.34TSBool . 243
10.35USBDeviceFilterAction . 243
10.36USBDeviceState . 243
10.37VRDPAuthType . 244
10.38VirtualSystemDescriptionType . 244
10.39VirtualSystemDescriptionValueType . 245

11 Host-Guest Communication Manager 246
11.1 Virtual Hardware Implementation . 246
11.2 Protocol Specification . 246

11.2.1 Request Header . 247
11.2.2 Connect . 248
11.2.3 Disconnect . 248
11.2.4 Call32 and Call64 . 249
11.2.5 Cancel . 250

11.3 Guest Software Interface . 251
11.3.1 The Guest Driver Interface . 251
11.3.2 Guest Application Interface . 253

11.4 HGCM Service Implementation . 253

12

1 Introduction

VirtualBox comes with comprehensive support for third-party developers. This Soft-
ware Development Kit (SDK) contains all the documentation and interface files that
are needed to write code that interacts with VirtualBox.

1.1 Modularity: the building blocks of VirtualBox

VirtualBox is cleanly separated into several layers, which can be visualized like in the
picture below:

The orange area represents code that runs in kernel mode, the blue area represents
userspace code.

At the bottom of the stack resides the hypervisor – the core of the virtualization
engine, controlling execution of the virtual machines and making sure they do not
conflict with each other or whatever the host computer is doing otherwise.

On top of the hypervisor, additional internal modules provide extra functionality. For
example, the RDP server, which can deliver the graphical output of a VM remotely to
an RDP client, is a separate module that is only loosely tacked into the virtual graphics

13

1 Introduction

device. Live Migration and Resource Monitor are additional modules currently in the
process of being added to VirtualBox.

What is primarily of interest for purposes of the SDK is the API layer block that
sits on top of all the previously mentioned blocks. This API, which we call the “Main
API”, exposes the entire feature set of the virtualization engine below. It is completely
documented in this SDK Reference – see chapter 9, Classes (interfaces), page 45 and
chapter 10, Enumerations (enums), page 226 – and available to anyone who wishes to
control VirtualBox programmatically. We chose the name “Main API” to differentiate
it from other programming interfaces of VirtualBox that may be publicly accessible.

With the Main API, you can create, configure, start, stop and delete virtual machines,
retrieve performance statistics about running VMs, configure the VirtualBox installa-
tion in general, and more. In fact, internally, the front-end programs VirtualBox
and VBoxManage use nothing but this API as well – there are no hidden backdoors
into the virtualization engine for our own front-ends. This ensures the entire Main
API is both well-documented and well-tested. (The same applies to VBoxHeadless,
which is not shown in the image.)

1.2 Two guises of the same “Main API”: the web
service or COM/XPCOM

There are several ways in which the Main API can be called by other code:

1. VirtualBox comes with a web service that maps nearly the entire Main API.
The web service ships in a stand-alone executable (vboxwebsrv) that, when
running, acts as an HTTP server, accepts SOAP connections and processes them.

Since the entire web service API is publicly described in a web service description
file (in WSDL format), you can write client programs that call the web service in
any language with a toolkit that understands WSDL. These days, that includes
most programming languages that are available: Java, C++, .NET, PHP, Python,
Perl and probably many more.

All of this is explained in detail in subsequent chapters of this book.

There are two ways in which you can write client code that uses the web service:

a) For Java with JAX-WS as well as Python, the SDK contains easy-to-use
classes that allow you to use the web service in an object-oriented, straight-
forward manner. We shall refer to this as the “object-oriented web service
(OOWS)“.
The OO bindings for Java are described in chapter 2.1, The object-oriented
web service for JAX-WS, page 20, those for Python in chapter 2.2, The object-
oriented web service for Python, page 24.

b) Alternatively, you can use the web service directly, without the object-
oriented client layer. We shall refer to this as the “raw web service”.

14

1 Introduction

You will then have neither native object orientation nor full type safety,
since web services are neither object-oriented nor stateful. However, in this
way, you can write client code even in languages for which we do not ship
object-oriented client code; all you need is a programming language with a
toolkit that can parse WSDL and generate client wrapper code from it.
We describe this further in chapter 3, Using the raw web service with any
language, page 25, with samples for Java and Perl.

2. Internally, for portability and easier maintenance, the Main API is implemented
using the Component Object Model (COM), an interprocess mechanism for
software components originally introduced by Microsoft for Microsoft Windows.
On a Windows host, VirtualBox will use Microsoft COM; on other hosts where
COM is not present, it ships with XPCOM, a free software implementation of
COM originally created by the Mozilla project for their browsers.

So, if you are familiar with COM and the C++ programming language (or
with any other programming language that can handle COM/XPCOM objects,
such as Java, Visual Basic or C#), then you can use the COM/XPCOM API di-
rectly. VirtualBox comes with all necessary files and documentation to build
fully functional COM applications. For an introduction, please see chapter 5, The
VirtualBox COM/XPCOM API, page 34 below.

The VirtualBox front-ends (the graphical user interfaces as well as the command
line), which are all written in C++, use COM/XPCOM to call the Main API. Tech-
nically, the web service is another front-end to this COM API, mapping almost all
of it to SOAP clients.

If you wonder which way to choose, here are a few comparisons:

Web service COM/XPCOM
Pro: Easy to use with Java and Python with the
object-oriented web service; extensive support
even with other languages (C++, .NET, PHP,
Perl and others)

Con: Requires
compiled C++ code,
verbose code, high
learning curve

Pro: Client can be on remote machine Con: Client must be
locally linked to
VirtualBox code

Con: Significant overhead due to XML
marshalling over the wire for each method call

Pro: Relatively high
execution speed

In the following chapters, we will describe the different ways in which to program
VirtualBox, starting with the method that is easiest to use and then increase complexity
as we go along.

15

1 Introduction

1.3 About web services in general

Web services are a particular type of programming interface. Whereas, with “normal”
programming, a program calls an application programming interface (API) defined by
another program or the operating system and both sides of the interface have to agree
on the calling convention and, in most cases, use the same programming language,
web services use Internet standards such as HTTP and XML to communicate.1

In order to successfully use a web service, a number of things are required – primar-
ily, a web service accepting connections; service descriptions; and then a client that
connects to that web service. The connections are governed by the SOAP standard,
which describes how messages are to be exchanged between a service and its clients;
the service descriptions are governed by WSDL.

In the case of VirtualBox, this translates into the following three components:

1. The VirtualBox web service (the “server”): this is the vboxwebsrv executable
shipped with VirtualBox. Once you start this executable (which acts as a HTTP
server on a specific TCP/IP port), clients can connect to the web service and thus
control a VirtualBox installation.

2. VirtualBox also comes with WSDL files that describe the services provided by
the web service. You can find these files in the sdk/bindings/webservice/
directory. These files are understood by the web service toolkits that are shipped
with most programming languages and enable you to easily access a web service
even if you don’t use our object-oriented client layers.

3. A client that connects to the web service in order to control the VirtualBox in-
stallation.

Unless you play with some of the samples shipped with VirtualBox, this needs to
be written by you.

1.4 Running the web service

The web service ships in an stand-alone executable, vboxwebsrv, that, when run-
ning, acts as a HTTP server, accepts SOAP connections and processes them – remotely
or from the same machine.

1In some ways, web services promise to deliver the same thing as CORBA and DCOM did years ago.
However, while these previous technologies relied on specific binary protocols and thus proved to be
difficult to use between diverging platforms, web services circumvent these incompatibilities by using
text-only standards like HTTP and XML. On the downside (and, one could say, typical of things related to
XML), a lot of standards are involved before a web service can be implemented. Many of the standards
invented around XML are used one way or another. As a result, web services are slow and verbose,
and the details can be incredibly messy. The relevant standards here are called SOAP and WSDL, where
SOAP describes the format of the messages that are exchanged (an XML document wrapped in an HTTP
header), and WSDL is an XML format that describes a complete API provided by a web service. WSDL
in turn uses XML Schema to describe types, which is not exactly terse either. However, as you will see
from the samples provided in this chapter, the VirtualBox web service shields you from these details and
is easy to use.

16

1 Introduction

Note: The web service executable is not contained with the VirtualBox SDK,
but instead ships with the standard VirtualBox binary package for your specific
platform. Since the SDK contains only platform-independent text files and
documentation, the binaries are instead shipped with the platform-specific
packages.

The vboxwebsrv program, which implements the web service, is a text-mode (con-
sole) program which, after being started, simply runs until it is interrupted with Ctrl-C
or a kill command.

Once the web service is started, it acts as a front-end to the VirtualBox installation
of the user account that it is running under. In other words, if the web service is run
under the user account of user1, it will see and manipulate the virtual machines and
other data represented by the VirtualBox data of that user (e.g., on a Linux machine,
under /home/user1/.VirtualBox; see the VirtualBox User Manual for details on
where this data is stored).

1.4.1 Command line options of vboxwebsrv

The web service supports the following command line options:

• --help (or -h): print a brief summary of command line options.

• --background (or -b): run the web service as a background daemon. This
option is not supported on Windows hosts.

• --host (or -H): This specifies the host to bind to and defaults to “localhost”.

• --port (or -p): This specifies which port to bind to on the host and defaults to
18083.

• --timeout (or -t): This specifies the session timeout, in seconds, and defaults
to 300 (five minutes). A web service client that has logged on but makes no calls
to the web service will automatically be disconnected after the number of sec-
onds specified here, as if it had called the IWebSessionManager::logoff()
method provided by the web service itself.

It is normally vital that each web service client call this method, as the web
service can accumulate large amounts of memory when running, especially if
a web service client does not properly release managed object references. As a
result, this timeout value should not be set too high, especially on machines with
a high load on the web service, or the web service may eventually deny service.

• --check-interval (or -i): This specifies the interval in which the web ser-
vice checks for timed-out clients, in seconds, and defaults to 5. This normally
does not need to be changed.

17

1 Introduction

• --verbose (or -v): Normally, the webservice outputs only brief messages to
the console each time a request is served. With this option, the webservice prints
much more detailed data about every request and the COM methods that those
requests are mapped to internally, which can be useful for debugging client pro-
grams.

• --logfile (or -F) <file>: If this is specified, the webservice not only prints
its output to the console, but also writes it to the specified file. The file is created
if it does not exist; if it does exist, new output is appended to it. This is useful if
you run the webservice unattended and need to debug problems after they have
occurred.

1.4.2 Authenticating at web service logon

As opposed to the COM/XPCOM variant of the Main API, a client that wants to use
the web service must first log on by calling the IWebsessionManager::logon()
API (see chapter 9.53.3, logon, page 224) that is specific to the web service. Logon is
necessary for the web service to be stateful; internally, it maintains a session for each
client that connects to it.

The IWebsessionManager::logon() API takes a user name and a password as
arguments, which the web service then passes to a customizable authentication plugin
that performs the actual authentication.

For testing purposes, it is recommended that you first disable authentication with
this command:

VBoxManage setproperty websrvauthlibrary null

Warning: This will cause all logons to succeed, regardless of user name or
password. This should of course not be used in a production environment.

Generally, the mechanism by which clients are authenticated is configurable by way
of the VBoxManage command:

VBoxManage setproperty websrvauthlibrary default|null|<library>

This way you can specify any shared object/dynamic link module that conforms with
the specifications for authentication modules as laid out in section 9.3 of the VirtualBox
User Manual; the web service uses the same kind of modules as the VirtualBox RDP
server.

By default, after installation, the web service uses the VRDPAuth module that ships
with VirtualBox. This module uses PAM on Linux hosts to authenticate users. Unless
vboxwebsrv runs as root, authentication will fail because on most Linux distribu-
tions, the file /etc/shadow, which is used by PAM, is not readable.

18

1 Introduction

1.4.3 Solaris host: starting the web service via SMF

On Solaris hosts, the VirtualBox web service daemon is integrated into the SMF frame-
work. You can change the parameters, but don’t have to if the defaults below already
match your needs:

svccfg -s svc:/application/virtualbox/webservice:default setprop config/host=localhost
svccfg -s svc:/application/virtualbox/webservice:default setprop config/port=18083
svccfg -s svc:/application/virtualbox/webservice:default setprop config/user=root

If you made any change, don’t forget to run the following command to put the
changes into effect immediately:

svcadm refresh svc:/application/virtualbox/webservice:default

If you forget the above command then the previous settings will be used when
enabling the service. Check the current property settings with:

svcprop -p config svc:/application/virtualbox/webservice:default

When everything is configured correctly you can start the VirtualBox webservice
with the following command:

svcadm enable svc:/application/virtualbox/webservice:default

For more information about SMF, please refer to the Solaris documentation.

19

2 The object-oriented web service
(OOWS)

As explained in chapter 1.2, Two guises of the same “Main API”: the web service or
COM/XPCOM, page 14, VirtualBox ships with client-side libraries for Java and Python
that allow you to use the VirtualBox web service in an intuitive, object-oriented way.
These libraries shield you from the client-side complications of managed object refer-
ences and other implementation details that come with the VirtualBox web service. (If
you do want to use the web service directly, have a look at chapter 3, Using the raw
web service with any language, page 25).

We recommend that you start your experiments with the VirtualBox web service by
using our object-oriented client libraries for JAX-WS, a web service toolkit for Java,
which enables you to write code to interact with VirtualBox in the simplest manner
possible.

2.1 The object-oriented web service for JAX-WS

JAX-WS is a powerful toolkit by Sun Microsystems to build both server and client code
with Java. It is part of Java 6 (JDK 1.6), but can also be obtained separately for Java
5 (JDK 1.5). The VirtualBox SDK comes with precompiled OOWS bindings for both
Java 5 and 6.

The following sections explain how to get the JAX-WS sample code running and
explain a few common practices when using the JAX-WS object-oriented web service.

2.1.1 Preparations

Since JAX-WS is already integrated into Java 6, no additional preparations are needed
for Java 6.

If you are using Java 5 (JDK 1.5.x), you will first need to download and install an
external JAX-WS implementation, as Java 5 does not support JAX-WS out of the box;
for example, you can download one from here: https://jax-ws.dev.java.net/
2.1.4/JAXWS2.1.4-20080502.jar. Then perform the installation (java -jar
JAXWS2.1.4-20080502.jar).

2.1.2 Getting started: running the sample code

To run the OOWS for JAX-WS samples that we ship with the SDK, perform the follow-
ing steps:

20

https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar
https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar

2 The object-oriented web service (OOWS)

1. Open a terminal and change to the directory where the JAX-WS samples reside.1

Examine the header of Makefile to see if the supplied variables (Java compiler,
Java executable) and a few other details match your system settings.

2. To start the VirtualBox web service, open a second terminal and change to the
directory where the VirtualBox executables are located. Then type:

./vboxwebsrv

The web service now waits for connections and will run until you press Ctrl+C
in this second terminal. (See chapter 1.4, Running the web service, page 16 for
details on how to run the web service.)

3. Back in the first terminal and still in the samples directory, to start a simple client
example just type:

make run16

if you’re on a Java 6 system; on a Java 5 system, run make run15 instead.

This should work on all Unix-like systems such as Linux and Solaris. For Win-
dows systems, use commands similar to what is used in the Makefile.

This will compile the clienttest.java code on the first call and then execute
the resulting clienttest class to show the locally installed VMs (see below).

The clienttest sample imitates a few typical command line tasks that
VBoxManage, VirtualBox’s regular command-line front-end, would provide (see the
VirtualBox User Manual for details). In particular, you can run:

• java clienttest show vms: show the virtual machines that are registered
locally.

• java clienttest list hostinfo: show various information about the
host this VirtualBox installation runs on.

• java clienttest startvm <vmname|uuid>: start the given virtual ma-
chine.

The clienttest.java sample code illustrates common basic practices how to
use the VirtualBox OOWS for JAX-WS, which we will explain in more detail in the
following chapters.

2.1.3 Logging on to the web service

Before a web service client can do anything useful, two objects need to be created, as
can be seen in the clienttest constructor:

1In sdk/bindings/webservice/java/jax-ws/samples/.

21

2 The object-oriented web service (OOWS)

1. An instance of IWebsessionManager, which is an interface provided by the web
service to manage “web sessions” – that is, stateful connections to the web service
with persistent objects upon which methods can be invoked.

In the OOWS for JAX-WS, the IWebsessionManager class must be constructed
explicitly, and a URL must be provided in the constructor that specifies where the
web service (the server) awaits connections. The code in clienttest.java
connects to “http://localhost:18083/“, which is the default.

The port number, by default 18083, must match the port number given to
the vboxwebsrv command line; see chapter 1.4.1, Command line options of
vboxwebsrv, page 17.

2. After that, the code calls IWebsessionManager::logon(), which is the first call
that actually communicates with the server. This authenticates the client with
the web service and returns an instance of IVirtualBox, the most fundamental
interface of the VirtualBox web service, from which all other functionality can be
derived.

If logon doesn’t work, please take another look at chapter 1.4.2, Authenticating
at web service logon, page 18.

2.1.4 Obtaining basic machine information. Reading attributes

To enumerate virtual machines, one would look at the “machines2” array attribute
in the IVirtualBox object returned by the logon() call mentioned above (see IMa-
chine::machines2). This array contains all virtual machines currently registered with
the host, each of them being an instance of IMachine . From each such instance, one
can query additional information, such as the UUID, the name, memory, operating
system and more by looking at the attributes; see the attributes list in the IMachine
documentation.

Note that attributes are mapped to corresponding “get” and (if the attribute is
not read-only) “set” methods. So when the documentation says that IMachine has
a “name“ attribute, this means you need to code something like the following to get
the machine’s name:

IMachine machine = ...;
String name = machine.getName();

2.1.5 Changing machine settings. Sessions

As said in the previous section, to read a machine’s attribute, one invokes the cor-
responding “get” method. One would think that to change settings of a machine, it
would suffice to call the corresponding “set” method – for example, to set a VM’s mem-
ory to 1024 MB, one would call setMemorySize(1024). Try that, and you will get
an error: “The machine is not mutable.“

22

2 The object-oriented web service (OOWS)

So unfortunately, things are not that easy. VirtualBox is a complicated environment
in which multiple processes compete for possibly the same resources, especially ma-
chine settings. As a result, machines must be “locked” before they can either be modi-
fied or started. This is to prevent multiple processes from making conflicting changes
to a machine: it should, for example, not be allowed to change the memory size of a
virtual machine while it is running. (You can’t add more memory to a real computer
while it is running either, at least not to an ordinary PC.) Also, two processes must not
change settings at the same time, or start a machine at the same time.

These requirements are implemented in the Main API by way of “sessions”, in partic-
ular, the ISession interface. Each process has its own instance of ISession. In the web
service, you cannot create such an object, but vboxwebsrv creates one for you when
you log on, which you can obtain by calling IWebsessionManager::getSessionObject().

This session object must then be used like a mutex semaphore in common program-
ming environments; in VirtualBox terminology, one must “open a direct session” on a
machine before it can be modified. This is done by calling IVirtualBox::openSession().

After the direct session has been opened, the ISession::machine attribute contains a
copy of the original IMachine object upon which the session was opened, but this copy
is “mutable”: you can invoke “set” methods on it.

Finally, it is important to never forget to close the session again, by calling ISes-
sion::close(). Otherwise, when the calling process end, the machine will receive the
state “aborted”, which can lead to loss of data.

So the sequence to change a machine’s memory to 1024 MB is something like this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);
...
IMachine machine = ...; // read-only machine
ISession session = mgr.getSessionObject();
vbox.openSession(session, machine.getId()); // machine is now locked
IMachine mutable = session.getMachine(); // obtain mutable machine
mutable.setMemorySize(1024);
mutable.saveSettings(); // write settings to XML
session.close();

2.1.6 Starting machines

To start a virtual machine, in VirtualBox terminology, one “opens a remote session”
for it by calling IVirtualBox::openRemoteSession(). In doing so, the caller instructs
the VirtualBox engine to start a new process with the virtual machine in it, since to
the host, each virtual machine looks like a single process, even if it has hundreds of
its own processes inside. (This new VM process in turn opens a direct session on the
machine, thus locking it to prevent access from other processes; this is why opening
another session will fail while the VM is running.)

Starting a machine looks something like this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);
...

23

2 The object-oriented web service (OOWS)

IMachine machine = ...; // read-only machine
IProgress prog = vbox.openRemoteSession(oSession,

machine.getId(),
"gui", // session type
""); // possibly environment setting

prog.waitForCompletion(10000); // give the process 10 secs
if (prog.getResultCode() != 0) // check success

System.out.println("Session failed!")

Note that no in-process (local) session object is needed here since we instruct
VirtualBox to spawn a new process, which will have its own session object.

2.1.7 Object management

The current OOWS for JAX-WS has certain memory management related limitations.
When you no longer need an object, call its IManagedObjectRef::release() method ex-
plicitly, which frees appropriate managed reference, as is required by the raw webser-
vice; see chapter 3.3.3, Managed object references, page 29 for details. This limitation
may be reconsidered in a future version of the VirtualBox SDK.

2.2 The object-oriented web service for Python

VirtualBox comes with two flavors of a Python API: one for web service, discussed
here, and one for the XPCOM API discussed in chapter 5.1, Python XPCOM API, page
34. The client code is mostly similar, except for the initialization part, so it’s up to the
application developer to choose the appropriate technology.

As indicated in chapter 1.2, Two guises of the same “Main API”: the web service or
COM/XPCOM, page 14, the XPCOM API gives better performance without the SOAP
overhead, enables certain features not possible via SOAP (e.g. callbacks) and does not
require a web server to be running. On the other hand, the XPCOM Python API re-
quires a suitable Python XPCOM bridge for your Python installation (VirtualBox ships
the most important ones for each platform), and you cannot connect to VirtualBox
remotely. Last but not least, Python is currently not supported on Windows hosts (you
may use VBScript there).

The VirtualBox OOWS for Python relies on the Python ZSI SOAP implementation
(see http://pywebsvcs.sourceforge.net/zsi.html), which you will need to
install locally before trying the examples.

To get started, change to bindings/webservice/python/samples/, which
contains an example of a simple interactive shell to control a VirtualBox instance. Just
type PYTHONPATH=../lib python ./vboxshell.py or simply make to start the
shell. See chapter 6, The VirtualBox shell, page 40 for more details on the shell’s func-
tionality. For you, as a VirtualBox application developer, the vboxshell sample could
be interesting as an example of to write code targeting both local and remote cases
(XPCOM and SOAP). The common part of the shell is the same – the only difference
is how it interacts with the invocation layer.

24

http://pywebsvcs.sourceforge.net/zsi.html

3 Using the raw web service with any
language

The following examples show you how to use the raw web service, without the object-
oriented client-side code that was described in the preceding chapter.

3.1 Raw web service example for Java and Axis

Instead of Sun’s JAX-WS, which ships with Java 1.6 and above, you can also use Axis,
an older web service toolkit created by the Apache foundation. If your distribution
does not have it installed, you can get a binary from http://www.apache.org.
The following examples assume that you have Axis 1.4 installed.

The VirtualBox SDK ships with an example for Axis that, again, is called
clienttest.java and that imitates a few of the commands of VBoxManage over
the wire.

Then perform the following steps:

1. Create a working directory somewhere. Under your VirtualBox installation direc-
tory, find the sdk/webservice/samples/java/axis/ directory and copy
the file clienttest.java to your working directory.

2. Open a terminal in your working directory. Execute the following command:

java org.apache.axis.wsdl.WSDL2Java /path/to/vboxwebService.wsdl

The vboxwebService.wsdl file should be located in the sdk/webservice/
directory.

If this fails, your Apache Axis may not be located on your system classpath, and
you may have to adjust the CLASSPATH environment variable. Something like
this:

export CLASSPATH="/path-to-axis-1_4/lib/*":$CLASSPATH

Use the directory where the Axis JAR files are located. Mind the quotes so that
your shell passes the “*“ character to the java executable without expanding. Al-
ternatively, add a corresponding -classpath argument to the “java” call above.

If the command executes successfully, you should see an “org” directory with sub-
directories containing Java source files in your working directory. These classes
represent the interfaces that the VirtualBox web service offers, as described by
the WSDL file.

25

http://www.apache.org

3 Using the raw web service with any language

This is the bit that makes using web services so attractive to client developers: if
a language’s toolkit understands WSDL, it can generate large amounts of support
code automatically. Clients can then easily use this support code and can be done
with just a few lines of code.

3. Next, compile the clienttest.java source:

javac clienttest.java

This should yield a “clienttest.class” file.

4. To start the VirtualBox web service, open a second terminal and change to the
directory where the VirtualBox executables are located. Then type:

./vboxwebsrv

The web service now waits for connections and will run until you press Ctrl+C
in this second terminal. (See chapter 1.4, Running the web service, page 16 for
details on how to run the web service.)

5. Back in the original terminal where you compiled the Java source, run the re-
sulting binary, which will then connect to the web service:

java clienttest

The client sample will connect to the web service (on localhost, but the code
could be changed to connect remotely if the web service was running on a dif-
ferent machine) and make a number of method calls. It will output the version
number of your VirtualBox installation and a list of all virtual machines that
are currently registered (with a bit of seemingly random data, which will be
explained later).

3.2 Raw web service example for Perl

We also ship a small sample for Perl. It uses the SOAP::Lite perl module to communi-
cate with VirtualBox WS.

The sdk/bindings/webservice/perl/lib/ directory contains a Perl module
that allows for communicating with the web service from Perl. You can generate such
a module yourself using the “stubmaker” tool that comes with SOAP::Lite, but since
that tool is sometimes unreliable, we are shipping a working module with the SDK for
your convenience.

Perform the following steps:

1. If SOAP::Lite is not yet installed on your system, you will need to in-
stall the package first. On Debian-based systems, the package is called
libsoap-lite-perl; on Gentoo, it’s dev-perl/SOAP-Lite.

2. Open a terminal in the sdk/bindings/webservice/perl/samples/ direc-
tory.

26

3 Using the raw web service with any language

3. To start the VirtualBox web service, open a second terminal and change to the
directory where the VirtualBox executables are located. Then type:

./vboxwebsrv

The web service now waits for connections and will run until you press Ctrl+C
in this second terminal. (See chapter 1.4, Running the web service, page 16 for
details on how to run the web service.)

4. In the first terminal with the Perl sample, run the clienttest.pl script

perl -I ../lib clienttest.pl

3.3 Programming considerations for the raw web
service

3.3.1 Fundamental conventions

If you are familiar with other web services, you may find the VirtualBox web service to
behave a bit differently to accommodate for the fact that VirtualBox web service more
or less maps the VirtualBox Main COM API. The following main differences had to be
taken care of:

• Web services, as expressed by WSDL, are not object-oriented. Even worse, they
are normally stateless (or, in web services terminology, “loosely coupled”). Web
service operations are entirely procedural, and one cannot normally make as-
sumptions about the state of a web service between function calls.

In particular, this normally means that you cannot work on objects in one method
call that were created by another call.

• The VirtualBox Main API, being expressed in COM, is object-oriented and works
entirely on objects, which are grouped into public interfaces, which in turn have
attributes and methods associated with them.

For the VirtualBox web service, this results in three fundamental conventions:

1. All function names in the VirtualBox web service consist of an interface name
and a method name, joined together by an underscore. This is because there are
only functions (“operations”) in WSDL, but no classes, interfaces, or methods.

2. All calls to the VirtualBox web service (except for logon, see below) take a man-
aged object reference as the first argument, representing the object upon which
the underlying method is invoked. (Managed object references are explained in
detail below.)

So, when one would normally code, in the pseudo-code of an object-oriented
language, to invoke a method upon an object:

27

3 Using the raw web service with any language

IMachine machine;
result = machine.getName();

In the VirtualBox web service, this looks something like this (again, pseudo-
code):
IMachineRef machine;
result = IMachine_getName(machine);

3. To make the web service stateful, and objects persistent between method calls,
the VirtualBox web service introduces a session manager (by way of the IWeb-
sessionManager interface), which manages object references. Any client wishing
to interact with the web service must first log on to the session manager and in
turn receives a managed object reference to an object that supports the IVirtual-
Box interface (the basic interface in the Main API).

In other words, as opposed to other web services, the VirtualBox web service is
both object-oriented and stateful.

3.3.2 Example: A typical web service client session

A typical short web service session to retrieve the version number of the VirtualBox
web service (to be precise, the underlying Main API version number) looks like this:

1. A client logs on to the web service by calling IWebsessionManager::logon() with
a valid user name and password. See chapter 1.4.2, Authenticating at web service
logon, page 18 for details about how authentication works.

2. On the server side, vboxwebsrv creates a session, which persists until the client
calls IWebsessionManager::logoff() or the session times out after a configurable
period of inactivity (see chapter 1.4.1, Command line options of vboxwebsrv, page
17).

For the new session, the web service creates an instance of IVirtualBox. This
interface is the most central one in the Main API and allows access to all other
interfaces, either through attributes or method calls. For example, IVirtualBox
contains a list of all virtual machines that are currently registered (as they would
be listed on the left side of the VirtualBox main program).

The web service then creates a managed object reference for this instance of
IVirtualBox and returns it to the calling client, which receives it as the return
value of the logon call. Something like this:
string oVirtualBox;
oVirtualBox = webservice.IWebsessionManager_logon("user", "pass");

(The managed object reference “oVirtualBox” is just a string consisting of dig-
its and dashes. However, it is a string with a meaning and will be checked
by the web service. For details, see below. As hinted above, IWebsessionMan-
ager::logon() is the only operation provided by the web service which does not
take a managed object reference as the first argument!)

28

3 Using the raw web service with any language

3. The VirtualBox Main API documentation says that the IVirtualBox interface
has a version attribute, which is a string. For each attribute, there is a “get”
and a “set” method in COM, which maps to according operations in the web
service. So, to retrieve the “version” attribute of this IVirtualBox object, the
web service client does this:

string version;
version = webservice.IVirtualBox_getVersion(oVirtualBox);

print version;

And it will print “2.2.0”.

4. The web service client calls IWebsessionManager::logoff() with the VirtualBox
managed object reference. This will clean up all allocated resources.

3.3.3 Managed object references

To a web service client, a managed object reference looks like a string: two 64-bit
hex numbers separated by a dash. This string, however, represents a COM object that
“lives” in the web service process. The two 64-bit numbers encoded in the managed
object reference represent a session ID (which is the same for all objects in the same
web service session, i.e. for all objects after one logon) and a unique object ID within
that session.

Managed object references are created in two situations:

1. When a client logs on, by calling IWebsessionManager::logon().

Upon logon, the websession manager creates one instance of IVirtualBox and
another object of ISession representing the web service session. This can be
retrieved using IWebsessionManager::getSessionObject().

(Technically, there is always only one IVirtualBox object, which is shared be-
tween all sessions and clients, as it is a COM singleton. However, each session
receives its own managed object reference to it. The ISession object, however, is
created and destroyed for each session.)

2. Whenever a web service clients invokes an operation whose COM implementa-
tion creates COM objects.

For example, IVirtualBox::createMachine() creates a new instance of IMachine;
the COM object returned by the COM method call is then wrapped into a man-
aged object reference by the web server, and this reference is returned to the
web service client.

Internally, in the web service process, each managed object reference is simply a
small data structure, containing a COM pointer to the “real” COM object, the web ses-
sion ID and the object ID. This structure is allocated on creation and stored efficiently
in hashes, so that the web service can look up the COM object quickly whenever a web

29

3 Using the raw web service with any language

service client wishes to make a method call. The random session ID also ensures that
one web service client cannot intercept the objects of another.

Managed object references are not destroyed automatically and must be released
by explicitly calling IManagedObjectRef::release(). This is important, as otherwise
hundreds or thousands of managed object references (and corresponding COM objects,
which can consume much more memory!) can pile up in the web service process and
eventually cause it to deny service.

To reiterate: The underlying COM object, which the reference points to, is only freed
if the managed object reference is released. It is therefore vital that web service clients
properly clean up after the managed object references that are returned to them.

When a web service client calls IWebsessionManager::logoff(), all managed object
references created during the session are automatically freed. For short-lived sessions
that do not create a lot of objects, logging off may therefore be sufficient, although it
is certainly not “best practice”.

3.3.4 Some more detail about web service operation

3.3.4.1 SOAP messages

Whenever a client makes a call to a web service, this involves a complicated procedure
internally. These calls are remote procedure calls. Each such procedure call typically
consists of two “message” being passed, where each message is a plain-text HTTP
request with a standard HTTP header and a special XML document following. This
XML document encodes the name of the procedure to call and the argument names
and values passed to it.

To give you an idea of what such a message looks like, assuming that a web service
provides a procedure called “SayHello”, which takes a string “name” as an argument
and returns “Hello” with a space and that name appended, the request message could
look like this:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:test="http://test/">
<SOAP-ENV:Body>

<test:SayHello>
<name>Peter</name>
</test:SayHello>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A similar message – the “response” message – would be sent back from the web service
to the client, containing the return value “Hello Peter”.

Most programming languages provide automatic support to generate such messages
whenever code in that programming language makes such a request. In other words,

30

3 Using the raw web service with any language

these programming languages allow for writing something like this (in pseudo-C++
code):

webServiceClass service("localhost", 18083); // server and port
string result = service.SayHello("Peter"); // invoke remote procedure

and would, for these two pseudo-lines, automatically perform these steps:

1. prepare a connection to a web service running on port 18083 of “localhost”;

2. for the SayHello() function of the web service, generate a SOAP message like
in the above example by encoding all arguments of the remote procedure call
(which could involve all kinds of type conversions and complex marshalling for
arrays and structures);

3. connect to the web service via HTTP and send that message;

4. wait for the web service to send a response message;

5. decode that response message and put the return value of the remote procedure
into the “result” variable.

3.3.4.2 Service descriptions in WSDL

In the above explanations about SOAP, it was left open how the programming lan-
guage learns about how to translate function calls in its own syntax into proper SOAP
messages. In other words, the programming language needs to know what operations
the web service supports and what types of arguments are required for the operation’s
data in order to be able to properly serialize and deserialize the data to and from the
web service. For example, if a web service operation expects a number in “double”
floating point format for a particular parameter, the programming language cannot
send to it a string instead.

For this, the Web Service Definition Language (WSDL) was invented, another XML
substandard that describes exactly what operations the web service supports and, for
each operation, which parameters and types are needed with each request and re-
sponse message. WSDL descriptions can be incredibly verbose, and one of the few
good things that can be said about this standard is that it is indeed supported by most
programming languages.

So, if it is said that a programming language “supports” web services, this typically
means that a programming language has support for parsing WSDL files and somehow
integrating the remote procedure calls into the native language syntax – for example,
like in the Java sample shown in chapter 3.1, Raw web service example for Java and
Axis, page 25.

For details about how programming languages support web services, please refer to
the documentation that comes with the individual languages. Here are a few pointers:

1. For C++, among many others, the gSOAP toolkit is a good option. Parts of
gSOAP are also used in VirtualBox to implement the VirtualBox web service.

31

3 Using the raw web service with any language

2. For Java, there are several implementations already described in this document.

3. Perl supports WSDL via the SOAP::Lite package. This in turn comes with a tool
called stubmaker.pl that allows you to turn any WSDL file into a Perl package
that you can import. (You can also import any WSDL file “live” by having it
parsed every time the script runs, but that can take a while.) You can then code
(again, assuming the above example):

my $result = servicename->sayHello("Peter");

A sample that uses SOAP::Lite was described in chapter 3.2, Raw web service
example for Perl, page 26.

32

4 Using the Main API documentation
for web service clients

The VirtualBox Main API described in this book is broken into many interfaces, all of
which are described in chapter 9, Classes (interfaces), page 45. In addition, enumer-
ation types used by the Main API are described in chapter 10, Enumerations (enums),
page 226.

These interfaces and their members (attributes and methods) map to different lan-
guage constructs, depending on the environment from which you interact with the
Main API. As “interfaces”, “attributes” and “methods” are COM concepts, please read
the documentation with the following notes in mind.

The object-oriented web service for JAX-WS attempts to map the Main API as
closely as possible to the Java language. In other words, objects are objects, interfaces
become classes, and you can call methods on objects as you would on local objects in
Java.

The main difference remains with attributes: to read an attribute, call a “getXXX”
method, with “XXX” being the attribute name with a capitalized first letter. So when
the Main API Reference says that IMachine has a “name” attribute, call getName()
on an IMachine object to obtain a machine’s name. Unless the attribute is marked as
read-only in the documentation, there will also be a corresponding “set” method.

With the raw webservice, things are more complicated:

1. Any COM method call becomes a function call in the raw web service, with the
object as an additional first parameter (before the “real” parameters listed in
the documentation). So when the documentation says that the IVirtualBox
interface supports the createMachine() method, the web service operation
is IVirtualBox_createMachine(), and a managed object reference to an
IVirtualBox object must be passed as the first argument.

2. For attributes in interfaces, there will be at least one “get” function; there will
also be a “set” function, unless the attribute is “readonly”. The attribute name
will be appended to the “get” or “set” prefix, with a capitalized first letter. So,
the “version” readonly attribute of the IVirtualBox interface can be retrieved
by calling IVirtualBox_getVersion().

3. Whenever the API documentation says that a method (or an attribute getter)
returns an object, it will returned a managed object reference in the web service
instead. As said above, managed object references should be released if the web
service client does not log off again immediately!

33

5 The VirtualBox COM/XPCOM API

If you do not require remote procedure calls such as those offered by the VirtualBox
web service, and if you know Python or C++ and COM, you might find it preferable
to program VirtualBox’s Main API directly via COM.

COM stands for “Component Object Model” and is a standard originally introduced
by Microsoft in the 1990s for Microsoft Windows. It allows for organizing software in
an object-oriented way and across processes; code in one process may access objects
that live in another process.

COM has several advantages: it is language-neutral, meaning that even though all
of VirtualBox is internally written in C++, programs written in other languages could
communicate with it. COM also cleanly separates interface from implementation, so
that external programs need not know anything about the messy and complicated
details of VirtualBox internals.

On a Windows host, all parts of VirtualBox will use the COM functionality that is
native to Windows. On other hosts (including Linux), VirtualBox comes with a built-in
implementation of XPCOM, as originally created by the Mozilla project, which we have
enhanced to support interprocess communication on a level comparable to Microsoft
COM. Internally, VirtualBox has an abstraction layer that allows the same VirtualBox
code to work both with native COM as well as our XPCOM implementation.

5.1 Python XPCOM API

(to be written)

5.2 C++ COM API

VirtualBox ships with sample programs that demonstrate how to use the Main API
to implement a number of tasks on your host platform. These samples can be found
in the /bindings/xpcom/samples directory for Linux, Mac OS X and Solaris and
/bindings/mscom/samples for Windows. The two samples are actually different,
because the one for Windows uses native COM, whereas the other uses our XPCOM
implementation, as described above.

Since COM and XPCOM are conceptually very similar but vary in the implementa-
tion details, we have created a “glue” layer that shields COM client code from these
differences. All VirtualBox uses is this glue layer, so the same code written once works
on both Windows hosts (with native COM) as well as on other hosts (with our XPCOM
implementation). It is recommended to always use this glue code instead of using

34

5 The VirtualBox COM/XPCOM API

the COM and XPCOM APIs directly, as it is very easy to make your code completely
independent from the platform it is running on.

In order to encapsulate platform differences between Microsoft COM and XPCOM,
the following items should be kept in mind when using the glue layer:

1. Attribute getters and setters. COM has the notion of “attributes” in interfaces,
which roughly compare to C++ member variables in classes. The difference
is that for each attribute declared in an interface, COM automatically provides
a “get” method to return the attribute’s value. Unless the attribute has been
marked as “readonly”, a “set” attribute is also provided.

To illustrate, the IVirtualBox interface has a “version” attribute, which is read-
only and of the “wstring” type (the standard string type in COM). As a result,
you can call the “get” method for this attribute to retrieve the version number of
VirtualBox.

Unfortunately, the implementation differs between COM and XPCOM. Mi-
crosoft COM names the “get” method like this: get_Attribute(),
whereas XPCOM uses this syntax: GetAttribute() (and accordingly
for “set” methods). To hide these differences, the VirtualBox glue code
provides the COMGETTER(attrib) and COMSETTER(attrib) macros.
So, COMGETTER(version)() (note, two pairs of brackets) expands to
get_Version() on Windows and GetVersion() on other platforms.

2. Unicode conversions. While the rest of the modern world has pretty much
settled on encoding strings in UTF-8, COM, unfortunately, uses UCS-16 encoding.
This requires a lot of conversions, in particular between the VirtualBox Main API
and the Qt GUI, which, like the rest of Qt, likes to use UTF-8.

To facilitate these conversions, VirtualBox provides the com::Bstr and
com::Utf8Str classes, which support all kinds of conversions back and forth.

3. COM autopointers. Possibly the greatest pain of using COM – reference count-
ing – is alleviated by the ComPtr<> template provided by the ptr.h file in the
glue layer.

5.3 C binding to XPCOM API

Note: This section currently applies to Linux hosts only.

Starting with version 2.2, VirtualBox offers a C binding for the XPCOM API.
The C binding provides a layer enabling object creation, method invocation and

attribute access from C.

35

5 The VirtualBox COM/XPCOM API

5.3.1 Getting started

The following sections describe how to use the C binding in a C program.
For Linux, a sample program is provided which demonstrates use of the C binding

to initialize XPCOM, get handles for VirtualBox and Session objects, make calls to list
and start virtual machines, and uninitialize resources when done. The program uses
the VBoxGlue library to open the C binding layer during runtime.

The sample program tstXPCOMCGlue is located in the bin directory and can be
run without arguments. It lists registered machines on the host along with some addi-
tional information and ask for a machine to start. The source for this program is avail-
able in sdk/bindings/xpcom/cbinding/samples/ directory. The source for the
VBoxGlue library is available in the sdk/bindings/xpcom/cbinding/ directory.

5.3.2 XPCOM initialization

Just like in C++, XPCOM needs to be initialized before it can be used. The
VBoxCAPI_v2_2.h header provides the interface to the C binding. Here’s how to
initialize XPCOM:

#include "VBoxCAPI_v2_2.h"
...
PCVBOXXPCOM g_pVBoxFuncs = NULL;
IVirtualBox *vbox = NULL;
ISession *session = NULL;

/*
* VBoxGetXPCOMCFunctions() is the only function exported by

* VBoxXPCOMC.so and the only one needed to make virtualbox

* work with C. This functions gives you the pointer to the

* function table (g_pVBoxFuncs).

*
* Once you get the function table, then how and which functions

* to use is explained below.

*
* g_pVBoxFuncs->pfnComInitialize does all the necessary startup

* action and provides us with pointers to vbox and session handles.

* It should be matched by a call to g_pVBoxFuncs->pfnComUninitialize()

* when done.

*/

g_pVBoxFuncs = VBoxGetXPCOMCFunctions(VBOX_XPCOMC_VERSION);
g_pVBoxFuncs->pfnComInitialize(&vbox, &session);

If either vbox or session is still NULL, initialization failed and the XPCOM API
cannot be used.

5.3.3 XPCOM method invocation

Method invocation is straightforward. It looks pretty much like the C++ way, aug-
mented with an extra indirection due to accessing the vtable and passing a pointer to
the object as the first argument to serve as the this pointer.

36

5 The VirtualBox COM/XPCOM API

Using the C binding, all method invocations return a numeric result code.
If an interface is specified as returning an object, a pointer to a pointer to the ap-

propriate object must be passed as the last argument. The method will then store an
object pointer in that location.

In other words, to call an object’s method what you need is

IObject *object;
nsresult rc;
...
/*
* Calling void IObject::method(arg, ...)

*/
rc = object->vtbl->Method(object, arg, ...);

...
IFoo *foo;
/*
* Calling IFoo IObject::method(arg, ...)

*/
rc = object->vtbl->Method(object, args, ..., &foo);

As a real-world example of a method invocation, let’s call IVirtualBox::openRemoteSession
which returns an IProgress object. Note again that the method name is capitalized.

IProgress *progress;
...
rc = vbox->vtbl->OpenRemoteSession(

vbox, /* this */
session, /* arg 1 */
id, /* arg 2 */
sessionType, /* arg 3 */
env, /* arg 4 */
&progress /* Out */

);

5.3.4 XPCOM attribute access

A construct similar to calling non-void methods is used to access object attributes.
For each attribute there exists a getter method, the name of which is composed of
Get followed by the capitalized attribute name. Unless the attribute is read-only, an
analogous Set method exists. Let’s apply these rules to read the IVirtualBox::revision
attribute.

Using the IVirtualBox handle vbox obtained above, calling its GetRevision
method looks like this:

PRUint32 rev;

rc = vbox->vtbl->GetRevision(vbox, &rev);
if (NS_SUCCEEDED(rc))
{

printf("Revision: %u\n", (unsigned)rev);

37

5 The VirtualBox COM/XPCOM API

}

All objects with their methods and attributes are documented in chapter 9, Classes
(interfaces), page 45.

5.3.5 String handling

When dealing with strings you have to be aware of a string’s encoding and ownership.
Internally, XPCOM uses UTF-16 encoded strings. A set of conversion functions is

provided to convert other encodings to and from UTF-16. The type of a UTF-16 char-
acter is PRUnichar. Strings of UTF-16 characters are arrays of that type. Most string
handling functions take pointers to that type. Prototypes for the following conversion
functions are declared in VBoxCAPI_v2_2.h.

5.3.5.1 Conversion of UTF-16 to and from UTF-8

int (*pfnUtf16ToUtf8)(const PRUnichar *pwszString, char **ppszString);
int (*pfnUtf8ToUtf16)(const char *pszString, PRUnichar **ppwszString);

5.3.5.2 Ownership

The ownership of a string determines who is responsible for releasing resources asso-
ciated with the string. Whenever XPCOM creates a string, ownership is transferred to
the caller. To avoid resource leaks, the caller should release resources once the string
is no longer needed.

5.3.6 XPCOM uninitialization

Uninitialization is performed by g_pVBoxFuncs->pfnComUninitialize(). If
your program can exit from more than one place, it is a good idea to install
this function as an exit handler with Standard C’s atexit() just after calling
g_pVBoxFuncs->pfnComInitialize() , e.g.

#include <stdlib.h>
#include <stdio.h>

...

/*
* Make sure g_pVBoxFuncs->pfnComUninitialize() is called at exit, no

* matter if we return from the initial call to main or call exit()

* somewhere else. Note that atexit registered functions are not

* called upon abnormal termination, i.e. when calling abort() or

* signal(). Separate provisions must be taken for these cases.

*/

if (atexit(g_pVBoxFuncs->pfnComUninitialize()) != 0) {

38

5 The VirtualBox COM/XPCOM API

fprintf(stderr, "failed to register g_pVBoxFuncs->pfnComUninitialize()\n");
exit(EXIT_FAILURE);

}

Another idea would be to write your own void myexit(int status) function,
calling g_pVBoxFuncs->pfnComUninitialize() followed by the real exit(),
and use it instead of exit() throughout your program and at the end of main.

If you expect the program to be terminated by a signal (e.g. user types CTRL-C
sending SIGINT) you might want to install a signal handler setting a flag noting that a
signal was sent and then calling g_pVBoxFuncs->pfnComUninitialize() later
on (usually not from the handler itself .)

That said, if a client program forgets to call g_pVBoxFuncs->pfnComUninitialize()
before it terminates, there is a mechanism in place which will eventually release ref-
erences held by the client. You should not rely on this, however.

5.3.7 Compiling and linking

A program using the C binding has to open the library during runtime using the help
of glue code provided and as shown in the example tstXPCOMCGlue.c. Compilation
and linking can be achieved, e.g., with a makefile fragment similar to

Where is the XPCOM include directory?
INCS_XPCOM = -I../../include
Where is the glue code directory?
GLUE_DIR = ..
GLUE_INC = -I..

#Compile Glue Library
VBoxXPCOMCGlue.o: $(GLUE_DIR)/VBoxXPCOMCGlue.c

$(CC) $(CFLAGS) $(INCS_XPCOM) $(GLUE_INC) -o $@ -c $<

Compile.
program.o: program.c VBoxCAPI_v2_2.h

$(CC) $(CFLAGS) $(INCS_XPCOM) $(GLUE_INC) -o $@ -c $<

Link.
program: program.o VBoxXPCOMCGlue.o

$(CC) -o $@ $^ -ldl

39

6 The VirtualBox shell

VirtualBox comes with an extensible shell, which allows you to control your virtual
machines from the command line. It is also a nontrivial example of how to use the
VirtualBox APIs from Python. You can easily extend this shell with your own com-
mands.

40

7 Main API change log

Generally, VirtualBox will maintain API compatibility within a major release; a ma-
jor release occurs when the first or the second of the three version components of
VirtualBox change (that is, in the x.y.z scheme, a major release is one where x or y
change, but not when only z changes).

In other words, updates like those from 2.0.0 to 2.0.2 will not come with API break-
ages.

Migration between major releases most likely will lead to API breakage, so please
make sure you updated code accordingly. JAX-WS Java wrappers enforce that
mechanism, by putting VirtualBox classes into version specific packages, such as
org.virtualbox_2_2. This approach allows to connect to multiple VirtualBox ver-
sions simultaneously from the same Java application.

The following lists all incompatible changes that the Main API underwent since the
original release of this SDK Reference with VirtualBox 2.0.

7.1 Incompatible API changes with version 2.1

• With VirtualBox 2.1, error codes were added to many error infos that give the
caller a machine-readable (numeric) feedback in addition to the error string that
has always been available. This is an ongoing process, and future versions of this
SDK reference will document the error codes for each method call.

• The hard disk and other media interfaces were completely redesigned. This was
necessary to account for the support of VMDK, VHD and other image types;
since backwards compatibility had to be broken anyway, we seized the moment
to redesign the interfaces in a more logical way.

– Previously, the old IHardDisk interface had several derivatives called
IVirtualDiskImage, IVMDKImage, IVHDImage, IISCSIHardDisk and ICus-
tomHardDisk for the various disk formats supported by VirtualBox. The
new IHardDisk2 interface that comes with version 2.1 now supports all
hard disk image formats itself.

– IHardDiskFormat is a new interface to describe the available back-ends
for hard disk images (e.g. VDI, VMDK, VHD or iSCSI). The IHard-
Disk2::format attribute can be used to find out the back-end that is in use
for a particular hard disk image. ISystemProperties::hardDiskFormats[]
contains a list of all back-ends supported by the system. ISystemProper-
ties::defaultHardDiskFormat contains the default system format.

41

7 Main API change log

– In addition, the new IMedium interface is a generic interface for hard disk,
DVD and floppy images that contains the attributes and methods shared
between them. It can be considered a parent class of the more specific
interfaces for those images, which are now IHardDisk2, IDVDImage2 and
IFloppyImage2.
In each case, the “2” versions of these interfaces replace the earlier versions
that did not have the “2” suffix. Previously, the IDVDImage and IFloppyIm-
age interfaces were entirely unrelated to IHardDisk.

– As a result, all parts of the API that previously referenced IHardDisk, ID-
VDImage or IFloppyImage or any of the old subclasses are gone and will
have replacements that use IHardDisk2, IDVDImage2 and IFloppyImage2;
see, for example, IMachine::attachHardDisk2.

– In particular, the IVirtualBox::hardDisks2 array replaces the earlier IVirtu-
alBox::hardDisks collection.

• IGuestOSType was extended to group operating systems into families and for
64-bit support.

• The IHostNetworkInterface interface was completely rewritten to account for the
changes in how Host Interface Networking is now implemented in VirtualBox
2.1.

• The IVirtualBox::machines2[] array replaces the former IVirtualBox::machines
collection.

• Added IHost::getProcessorFeature() and ProcessorFeature enumeration.

• The parameter list for IVirtualBox::createMachine() was modified.

• Added IMachine::pushGuestProperty().

• New attributes in IMachine: accelerate3DEnabled, HWVirtExVPIDEnabled,
guestPropertyNotificationPatterns, CPUCount.

• Added IConsole::powerUpPaused() and IConsole::getGuestEnteredACPIMode().

• Removed ResourceUsage enumeration.

7.2 Incompatible API changes with version 2.2

• Added explicit version number into JAX-WS Java package names, such as
org.virtualbox_2_2, allowing connect to multiple VirtualBox clients from
single Java application.

• The interfaces having a “2” suffix attached to them with version 2.1 were re-
named again to have that suffix removed. This time around, this change involves
only the name, there are no functional differences.

42

7 Main API change log

As a result, IDVDImage2 is now IDVDImage2; IHardDisk2 is now IHardDisk;
IHardDisk2Attachment is now IHardDiskAttachment.

Consequentially, all related methods and attributes that had a “2” suffix have
been renamed; for example, IMachine::attachHardDisk2 now becomes IMa-
chine::attachHardDisk().

• IVirtualBox::openHardDisk() has an extra parameter for opening a disk
read/write or read-only.

• The remaining collections were replaced by more performant safe-arrays. This
affects the following collections:

– IGuestOSTypeCollection
– IHostDVDDriveCollection
– IHostFloppyDriveCollection
– IHostUSBDeviceCollection
– IHostUSBDeviceFilterCollection
– IProgressCollection
– ISharedFolderCollection
– ISnapshotCollection
– IUSBDeviceCollection
– IUSBDeviceFilterCollection

• Since “Host Interface Networking” was renamed to “bridged networking” and
host-only networking was introduced, all associated interfaces needed renaming
as well. In detail:

– The HostNetworkInterfaceType enum has been renamed to HostNetwork-
InterfaceMediumType

– The IHostNetworkInterface::type attribute has been renamed to IHostNet-
workInterface::mediumType

– INetworkAdapter::attachToHostInterface() has been renamed to INet-
workAdapter::attachToBridgedInterface()

– IHost::createHostNetworkInterface() has been renamed to IHost::createHostOnlyNetworkInterface()
– IHost::removeHostNetworkInterface() has been renamed to IHost::removeHostOnlyNetworkInterface()

43

8 License information

The sample code files shipped with the SDK are generally licensed liberally to make it
easy for anyone to use this code for their own application code.

The Java files under bindings/webservice/java/jax-ws/ (library files for
the object-oriented web service) are, by contrast, licensed under the GNU Lesser Gen-
eral Public License (LGPL) V2.1.

See sdk/bindings/webservice/java/jax-ws/src/COPYING.LIB for the
full text of the LGPL 2.1.

When in doubt, please refer to the individual source code files shipped with this
SDK.

44

9 Classes (interfaces)

9.1 IAppliance

Represents a platform-independent appliance in OVF format. An instance of this is
returned by IVirtualBox::createAppliance(), which can then be used to import and
export appliances with VirtualBox.

The OVF standard suggests two different physical file formats:

1. If the OVF is distributed as a set of files, then file must be a fully qualified
path name to an existing OVF descriptor file with an .ovf file extension. If this
descriptor file references other files, as OVF appliances distributed as a set of
files most likely do, those files must be in the same directory as the descriptor
file.

2. If the OVF is distributed as a single file, it must be in TAR format and have the
.ova file extension. This TAR file must then contain at least the OVF descriptor
files and optionally other files.

At this time, VirtualBox does not not yet support the packed (TAR) variant; sup-
port will be added with a later version.

Importing an OVF appliance into VirtualBox as instances of IMachine involves the
following sequence of API calls:

1. Call IVirtualBox::createAppliance(). This will create an empty IAppliance object.

2. On the new object, call read() with the full path of the OVF file you would like
to import. So long as this file is syntactically valid, this will succeed and return
an instance of IAppliance that contains the parsed data from the OVF file.

3. Next, call interpret(), which analyzes the OVF data and sets up the contents of
the IAppliance attributes accordingly. These can be inspected by a VirtualBox
front-end such as the GUI, and the suggestions can be displayed to the user. In
particular, the virtualSystemDescriptions[] array contains instances of IVirtual-
SystemDescription which represent the virtual systems in the OVF, which in turn
describe the virtual hardware prescribed by the OVF (network and hardware
adapters, virtual disk images, memory size and so on). The GUI can then give
the user the option to confirm and/or change these suggestions.

4. If desired, call IVirtualSystemDescription::setFinalValues() for each virtual sys-
tem to override the suggestions made by the interpret() routine.

45

9 Classes (interfaces)

5. Finally, call importMachines() to create virtual machines in VirtualBox as in-
stances of IMachine that match the information in the virtual system descrip-
tions.

Exporting VirtualBox machines into an OVF appliance involves the following steps:

1. As with importing, first call IVirtualBox::createAppliance() to create an empty
IAppliance object.

2. For each machine you would like to export, call IMachine::export() with the
IAppliance object you just created. This creates an instance of IVirtualSystemDe-
scription inside the appliance.

3. If desired, call IVirtualSystemDescription::setFinalValues() for each virtual sys-
tem to override the suggestions made by the export() routine.

4. Finally, call write() with a path specification to have the OVF file written.

9.1.1 Attributes

9.1.1.1 path (read-only)

wstring IAppliance::path

Path to the main file of the OVF appliance, which is either the .ovf or the .ova file
passed to read() (for import) or write() (for export). This attribute is empty until one
of these methods has been called.

9.1.1.2 disks (read-only)

wstring IAppliance::disks[]

Array of virtual disk definitions. One such description exists for each disk definition
in the OVF; each string array item represents one such piece of disk information, with
the information fields separated by tab (\\t) characters.

The caller should be prepared for additional fields being appended to this string in
future versions of VirtualBox and therefore check for the number of tabs in the strings
returned.

In the current version, the following eight fields are returned per string in the array:

1. Disk ID (unique string identifier given to disk)

2. Capacity (unsigned integer indicating the maximum capacity of the disk)

3. Populated size (optional unsigned integer indicating the current size of the disk;
can be approximate; -1 if unspecified)

4. Format (string identifying the disk format, typically “http://www.vmware.com/specifications/vmdk.html#sparse”)

46

9 Classes (interfaces)

5. Reference (where to find the disk image, typically a file name; if empty, then the
disk should be created on import)

6. Image size (optional unsigned integer indicating the size of the image, which
need not necessarily be the same as the values specified above, since the image
may be compressed or sparse; -1 if not specified)

7. Chunk size (optional unsigned integer if the image is split into chunks; presently
unsupported and always -1)

8. Compression (optional string equalling “gzip” if the image is gzip-compressed)

9.1.1.3 virtualSystemDescriptions (read-only)

IVirtualSystemDescription IAppliance::virtualSystemDescriptions[]

Array of virtual system descriptions. One such description is created for each virtual
system found in the OVF. This array is empty until either interpret() (for import) or
IMachine::export() (for export) has been called.

9.1.2 getWarnings
wstring IAppliance::getWarnings()

Returns textual warnings which occured during execution of interpret().

9.1.3 importMachines
IProgress IAppliance::importMachines()

Imports the appliance into VirtualBox by creating instances of IMachine and other
interfaces that match the information contained in the appliance as closely as possible,
as represented by the import instructions in the virtualSystemDescriptions[] array.

Calling this method is the final step of importing an appliance into VirtualBox; see
IAppliance for an overview.

Since importing the appliance will most probably involve copying and converting
disk images, which can take a long time, this method operates asynchronously and
returns an IProgress object to allow the caller to monitor the progress.

9.1.4 interpret
void IAppliance::interpret()

Interprets the OVF data that was read when the appliance was constructed. After
calling this method, one can inspect the virtualSystemDescriptions[] array attribute,
which will then contain one IVirtualSystemDescription for each virtual machine found
in the appliance.

47

9 Classes (interfaces)

Calling this method is the second step of importing an appliance into VirtualBox;
see IAppliance for an overview.

After calling this method, one should call getWarnings() to find out if problems were
encountered during the processing which might later lead to errors.

9.1.5 read
void IAppliance::read(

[in] wstring file)

Reads an OVF file into the appliance object.
This method succeeds if the OVF is syntactically valid and, by itself, without errors.

The mere fact that this method returns successfully does not mean that VirtualBox
supports all features requested by the appliance; this can only be examined after a call
to interpret().

9.1.6 write
IProgress IAppliance::write(

[in] wstring format,
[in] wstring path)

Writes the contents of the appliance exports into a new OVF file.
Calling this method is the final step of exporting an appliance from VirtualBox; see

IAppliance for an overview.
Since exporting the appliance will most probably involve copying and converting

disk images, which can take a long time, this method operates asynchronously and
returns an IProgress object to allow the caller to monitor the progress.

9.2 IAudioAdapter

The IAudioAdapter interface represents the virtual audio adapter of the virtual ma-
chine. Used in IMachine::audioAdapter.

9.2.1 Attributes

9.2.1.1 enabled (read/write)

boolean IAudioAdapter::enabled

Flag whether the audio adapter is present in the guest system. If disabled, the virtual
guest hardware will not contain any audio adapter. Can only be changed when the VM
is not running.

48

9 Classes (interfaces)

9.2.1.2 audioController (read/write)

AudioControllerType IAudioAdapter::audioController

The audio hardware we emulate.

9.2.1.3 audioDriver (read/write)

AudioDriverType IAudioAdapter::audioDriver

Audio driver the adapter is connected to. This setting can only be changed when
the VM is not running.

9.3 IBIOSSettings

The IBIOSSettings interface represents BIOS settings of the virtual machine. This is
used only in the IMachine::BIOSSettings attribute.

9.3.1 Attributes

9.3.1.1 logoFadeIn (read/write)

boolean IBIOSSettings::logoFadeIn

Fade in flag for BIOS logo animation.

9.3.1.2 logoFadeOut (read/write)

boolean IBIOSSettings::logoFadeOut

Fade out flag for BIOS logo animation.

9.3.1.3 logoDisplayTime (read/write)

unsigned long IBIOSSettings::logoDisplayTime

BIOS logo display time in milliseconds (0 = default).

9.3.1.4 logoImagePath (read/write)

wstring IBIOSSettings::logoImagePath

Local file system path for external BIOS image.

9.3.1.5 bootMenuMode (read/write)

BIOSBootMenuMode IBIOSSettings::bootMenuMode

Mode of the BIOS boot device menu.

49

9 Classes (interfaces)

9.3.1.6 ACPIEnabled (read/write)

boolean IBIOSSettings::ACPIEnabled

ACPI support flag.

9.3.1.7 IOAPICEnabled (read/write)

boolean IBIOSSettings::IOAPICEnabled

IO APIC support flag. If set, VirtualBox will provide an IO APIC and support IRQs
above 15.

9.3.1.8 timeOffset (read/write)

long long IBIOSSettings::timeOffset

Offset in milliseconds from the host system time. This allows for guests running
with a different system date/time than the host. It is equivalent to setting the system
date/time in the BIOS except it is not an absolute value but a relative one. Guest
Additions time synchronization honors this offset.

9.3.1.9 PXEDebugEnabled (read/write)

boolean IBIOSSettings::PXEDebugEnabled

PXE debug logging flag. If set, VirtualBox will write extensive PXE trace information
to the release log.

9.4 IConsole

The IConsole interface represents an interface to control virtual machine execution.
The console object that implements the IConsole interface is obtained from a

session object after the session for the given machine has been opened using
one of IVirtualBox::openSession(), IVirtualBox::openRemoteSession() or IVirtual-
Box::openExistingSession() methods.

Methods of the IConsole interface allow the caller to query the current virtual ma-
chine execution state, pause the machine or power it down, save the machine state or
take a snapshot, attach and detach removable media and so on.

See also: ISession

50

9 Classes (interfaces)

9.4.1 Attributes

9.4.1.1 machine (read-only)

IMachine IConsole::machine

Machine object this console is sessioned with.

Note: This is a convenience property, it has the same value as ISes-
sion::machine of the corresponding session object.

9.4.1.2 state (read-only)

MachineState IConsole::state

Current execution state of the machine.

Note: This property always returns the same value as the corresponding prop-
erty of the IMachine object this console is sessioned with. For the process that
owns (executes) the VM, this is the preferable way of querying the VM state,
because no IPC calls are made.

9.4.1.3 guest (read-only)

IGuest IConsole::guest

Note: This attribute is not supported in the web service.

Guest object.

9.4.1.4 keyboard (read-only)

IKeyboard IConsole::keyboard

Virtual keyboard object.

Note: If the machine is not running, any attempt to use the returned object
will result in an error.

51

9 Classes (interfaces)

9.4.1.5 mouse (read-only)

IMouse IConsole::mouse

Virtual mouse object.

Note: If the machine is not running, any attempt to use the returned object
will result in an error.

9.4.1.6 display (read-only)

IDisplay IConsole::display

Note: This attribute is not supported in the web service.

Virtual display object.

Note: If the machine is not running, any attempt to use the returned object
will result in an error.

9.4.1.7 debugger (read-only)

IMachineDebugger IConsole::debugger

Note: This attribute is not supported in the web service.

Debugging interface.

9.4.1.8 USBDevices (read-only)

IUSBDevice IConsole::USBDevices[]

Collection of USB devices currently attached to the virtual USB controller.

Note: The collection is empty if the machine is not running.

52

9 Classes (interfaces)

9.4.1.9 remoteUSBDevices (read-only)

IHostUSBDevice IConsole::remoteUSBDevices[]

List of USB devices currently attached to the remote VRDP client. Once a new device
is physically attached to the remote host computer, it appears in this list and remains
there until detached.

9.4.1.10 sharedFolders (read-only)

ISharedFolder IConsole::sharedFolders[]

Collection of shared folders for the current session. These folders are called tran-
sient shared folders because they are available to the guest OS running inside the
associated virtual machine only for the duration of the session (as opposed to IMa-
chine::sharedFolders[] which represent permanent shared folders). When the session
is closed (e.g. the machine is powered down), these folders are automatically dis-
carded.

New shared folders are added to the collection using createSharedFolder(). Existing
shared folders can be removed using removeSharedFolder().

9.4.1.11 remoteDisplayInfo (read-only)

IRemoteDisplayInfo IConsole::remoteDisplayInfo

Interface that provides information on Remote Display (VRDP) connection.

9.4.2 adoptSavedState
void IConsole::adoptSavedState(

[in] wstring savedStateFile)

Associates the given saved state file to the virtual machine.
On success, the machine will go to the Saved state. Next time it is powered up, it

will be restored from the adopted saved state and continue execution from the place
where the saved state file was created.

The specified saved state file path may be absolute or relative to the folder the VM
normally saves the state to (usually, IMachine::snapshotFolder).

Note: It’s a caller’s responsibility to make sure the given saved state file is
compatible with the settings of this virtual machine that represent its virtual
hardware (memory size, hard disk configuration etc.). If there is a mismatch,
the behavior of the virtual machine is undefined.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine state neither PoweredOff nor
Aborted.

53

9 Classes (interfaces)

9.4.3 attachUSBDevice
void IConsole::attachUSBDevice(

[in] uuid id)

Attaches a host USB device with the given UUID to the USB controller of the virtual
machine.

The device needs to be in one of the following states: ::, :: or ::, otherwise an error
is immediately returned.

When the device state is Busy, an error may also be returned if the host computer
refuses to release it for some reason.

See also: IUSBController::deviceFilters, USBDeviceState
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine state neither Running nor
Paused.

• VBOX_E_PDM_ERROR: Virtual machine does not have a USB controller.

9.4.4 createSharedFolder
void IConsole::createSharedFolder(

[in] wstring name,
[in] wstring hostPath,
[in] boolean writable)

Creates a transient new shared folder by associating the given logical name with the
given host path, adds it to the collection of shared folders and starts sharing it. Refer
to the description of ISharedFolder to read more about logical names.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine in Saved state or currently
changing state.

• VBOX_E_FILE_ERROR: Shared folder already exists or not accessible.

9.4.5 detachUSBDevice
IUSBDevice IConsole::detachUSBDevice(

[in] uuid id)

Detaches an USB device with the given UUID from the USB controller of the virtual
machine.

After this method succeeds, the VirtualBox server re-initiates all USB filters as if the
device were just physically attached to the host, but filters of this machine are ignored
to avoid a possible automatic re-attachment.

See also: IUSBController::deviceFilters, USBDeviceState
If this method fails, the following error codes may be reported:

54

9 Classes (interfaces)

• VBOX_E_PDM_ERROR: Virtual machine does not have a USB controller.

• E_INVALIDARG: USB device not attached to this virtual machine.

9.4.6 discardCurrentSnapshotAndState
IProgress IConsole::discardCurrentSnapshotAndState()

This method is equivalent to doing discardSnapshot (currentSnapshot.id(),
progress) followed by discardCurrentState().

As a result, the machine will be fully restored from the snapshot preceding the
current snapshot, while both the current snapshot and the current machine state will
be discarded.

If the current snapshot is the first snapshot of the machine (i.e. it has the only snap-
shot), the current machine state will be discarded before discarding the snapshot. In
other words, the machine will be restored from its last snapshot, before discarding
it. This differs from performing a single discardSnapshot() call (note that no discard-
CurrentState() will be possible after it) to the effect that the latter will preserve the
current state instead of discarding it.

Unless explicitly mentioned otherwise, all remarks and limitations of the above two
methods also apply to this method.

Note: The machine must not be running, otherwise the operation will fail.

Note: If the machine state is Saved prior to this operation, the saved state file
will be implicitly discarded (as if discardSavedState() were called).

Note: This method is more efficient than calling both of the above methods
separately: it requires less IPC calls and provides a single progress object.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine is running.

9.4.7 discardCurrentState
IProgress IConsole::discardCurrentState()

55

9 Classes (interfaces)

This operation is similar to discardSnapshot() but affects the current machine state.
This means that the state stored in the current snapshot will become a new current
state, and all current settings of the machine and changes stored in differencing hard
disks will be lost.

After this operation is successfully completed, new empty differencing hard disks
are created for all normal hard disks of the machine.

If the current snapshot of the machine is an online snapshot, the machine will go
to the saved state, so that the next time it is powered on, the execution state will be
restored from the current snapshot.

Note: The machine must not be running, otherwise the operation will fail.

Note: If the machine state is Saved prior to this operation, the saved state file
will be implicitly discarded (as if discardSavedState() were called).

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine is running.

9.4.8 discardSavedState
void IConsole::discardSavedState()

Discards (deletes) the saved state of the virtual machine previously created by saveS-
tate(). Next time the machine is powered up, a clean boot will occur.

Note: This operation is equivalent to resetting or powering off the machine
without doing a proper shutdown in the guest OS.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine not in state Saved.

9.4.9 discardSnapshot
IProgress IConsole::discardSnapshot(

[in] uuid id)

Starts discarding the specified snapshot. The execution state and settings of the
associated machine stored in the snapshot will be deleted. The contents of all differ-
encing hard disks of this snapshot will be merged with the contents of their dependent
child hard disks to keep the, disks valid (in other words, all changes represented by

56

9 Classes (interfaces)

hard disks being discarded will be propagated to their child hard disks). After that,
this snapshot’s differencing hard disks will be deleted. The parent of this snapshot will
become a new parent for all its child snapshots.

If the discarded snapshot is the current one, its parent snapshot will become a new
current snapshot. The current machine state is not directly affected in this case, except
that currently attached differencing hard disks based on hard disks of the discarded
snapshot will be also merged as described above.

If the discarded snapshot is the first one (the root snapshot) and it has exactly one
child snapshot, this child snapshot will become the first snapshot after discarding. If
there are no children at all (i.e. the first snapshot is the only snapshot of the machine),
both the current and the first snapshot of the machine will be set to null. In all other
cases, the first snapshot cannot be discarded.

You cannot discard the snapshot if it stores normal (non-differencing) hard disks
that have differencing hard disks based on them. Snapshots of such kind can be dis-
carded only when every normal hard disk has either no children at all or exactly one
child. In the former case, the normal hard disk simply becomes unused (i.e. not at-
tached to any VM). In the latter case, it receives all the changes stored in the child hard
disk, and then it replaces the child hard disk in the configuration of the corresponding
snapshot or machine.

Also, you cannot discard the snapshot if it stores hard disks (of any type) having
differencing child hard disks that belong to other machines. Such snapshots can be
only discarded after you discard all snapshots of other machines containing “foreign”
child disks, or detach these “foreign” child disks from machines they are attached to.

One particular example of the snapshot storing normal hard disks is the first snap-
shot of a virtual machine that had normal hard disks attached when taking the snap-
shot. Be careful when discarding such snapshots because this implicitly commits
changes (made since the snapshot being discarded has been taken) to normal hard
disks (as described above), which may be not what you want.

The virtual machine is put to the Discarding state until the discard operation is
completed.

Note: The machine must not be running, otherwise the operation will fail.

Note: Child hard disks of all normal hard disks of the discarded snapshot
must be accessible (see IMedium::state) for this operation to succeed. In
particular, this means that all virtual machines, whose hard disks are directly
or indirectly based on the hard disks of discarded snapshot, must be powered
off.

57

9 Classes (interfaces)

Note: Merging hard disk contents can be very time and disk space consuming,
if these disks are big in size and have many children. However, if the snapshot
being discarded is the last (head) snapshot on the branch, the operation will
be rather quick.

Note: Note that discarding the current snapshot will implicitly call IMa-
chine::saveSettings() to make all current machine settings permanent.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine is running.

9.4.10 findUSBDeviceByAddress
IUSBDevice IConsole::findUSBDeviceByAddress(

[in] wstring name)

Searches for a USB device with the given host address.
See also: IUSBDevice::address
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any USB
device.

9.4.11 findUSBDeviceById
IUSBDevice IConsole::findUSBDeviceById(

[in] uuid id)

Searches for a USB device with the given UUID.
See also: IUSBDevice::id
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Given id does not correspond to any USB
device.

9.4.12 getDeviceActivity
DeviceActivity IConsole::getDeviceActivity(

[in] DeviceType type)

Gets the current activity type of a given device or device group.
If this method fails, the following error codes may be reported:

• E_INVALIDARG: Invalid device type.

58

9 Classes (interfaces)

9.4.13 getGuestEnteredACPIMode
boolean IConsole::getGuestEnteredACPIMode()

Checks if the guest entered the ACPI mode G0 (working) or G1 (sleeping). If this
method returns false, the guest will most likely not respond to external ACPI events.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

9.4.14 getPowerButtonHandled
boolean IConsole::getPowerButtonHandled()

Checks if the last power button event was handled by guest.
If this method fails, the following error codes may be reported:

• VBOX_E_PDM_ERROR: Checking if the event was handled by the guest OS
failed.

9.4.15 pause
void IConsole::pause()

Pauses the virtual machine execution.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

• VBOX_E_VM_ERROR: Virtual machine error in suspend operation.

9.4.16 powerButton
void IConsole::powerButton()

Sends the ACPI power button event to the guest.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

• VBOX_E_PDM_ERROR: Controlled power off failed.

59

9 Classes (interfaces)

9.4.17 powerDown
void IConsole::powerDown()

Stops the virtual machine execution. After this operation completes, the machine
will go to the PoweredOff state.

@deprecated This method will be removed in VirtualBox 2.1 where the powerDow-
nAsync() method will take its name. Do not use this method in the code.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine must be Running, Paused or
Stuck to be powered down.

• VBOX_E_VM_ERROR: Unable to power off or destroy virtual machine.

9.4.18 powerDownAsync
IProgress IConsole::powerDownAsync()

Initiates the power down procedure to stop the virtual machine execution.
The completion of the power down procedure is tracked using the returned IProgress

object. After the operation is complete, the machine will go to the PoweredOff state.
@warning This method will be renamed to “powerDown” in VirtualBox 2.1 where

the original powerDown() method will be removed. You will need to rename “power-
DownAsync” to “powerDown” in your sources to make them build with version 2.1.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine must be Running, Paused or
Stuck to be powered down.

9.4.19 powerUp
IProgress IConsole::powerUp()

Starts the virtual machine execution using the current machine state (that is, its
current execution state, current settings and current hard disks).

If the machine is powered off or aborted, the execution will start from the beginning
(as if the real hardware were just powered on).

If the machine is in the :: state, it will continue its execution the point where the
state has been saved.

Note: Unless you are trying to write a new VirtualBox front-end that per-
forms direct machine execution (like the VirtualBox or VBoxSDL front-ends),
don’t call powerUp() in a direct session opened by IVirtualBox::openSession()
and use this session only to change virtual machine settings. If you sim-
ply want to start virtual machine execution using one of the existing front-
ends (for example the VirtualBox GUI or headless server), simply use IVir-
tualBox::openRemoteSession(); these front-ends will power up the machine
automatically for you.

60

9 Classes (interfaces)

See also: #saveState
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine already running.

• VBOX_E_HOST_ERROR: Host interface does not exist or name not set.

• VBOX_E_FILE_ERROR: Invalid saved state file.

9.4.20 powerUpPaused
IProgress IConsole::powerUpPaused()

Identical to powerUp except that the VM will enter the :: state, instead of ::.
See also: #powerUp
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine already running.

• VBOX_E_HOST_ERROR: Host interface does not exist or name not set.

• VBOX_E_FILE_ERROR: Invalid saved state file.

9.4.21 registerCallback
void IConsole::registerCallback(

[in] IConsoleCallback callback)

Registers a new console callback on this instance. The methods of the callback
interface will be called by this instance when the appropriate event occurs.

9.4.22 removeSharedFolder
void IConsole::removeSharedFolder(

[in] wstring name)

Removes a transient shared folder with the given name previously created by cre-
ateSharedFolder() from the collection of shared folders and stops sharing it.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine in Saved state or currently
changing state.

• VBOX_E_FILE_ERROR: Shared folder does not exists.

61

9 Classes (interfaces)

9.4.23 reset
void IConsole::reset()

Resets the virtual machine.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

• VBOX_E_VM_ERROR: Virtual machine error in reset operation.

9.4.24 resume
void IConsole::resume()

Resumes the virtual machine execution.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine not in Paused state.

• VBOX_E_VM_ERROR: Virtual machine error in resume operation.

9.4.25 saveState
IProgress IConsole::saveState()

Saves the current execution state of a running virtual machine and stops its execu-
tion.

After this operation completes, the machine will go to the Saved state. Next time it
is powered up, this state will be restored and the machine will continue its execution
from the place where it was saved.

This operation differs from taking a snapshot to the effect that it doesn’t create new
differencing hard disks. Also, once the machine is powered up from the state saved
using this method, the saved state is deleted, so it will be impossible to return to this
state later.

Note: On success, this method implicitly calls IMachine::saveSettings() to
save all current machine settings (including runtime changes to the DVD
drive, etc.). Together with the impossibility to change any VM settings when
it is in the Saved state, this guarantees adequate hardware configuration of
the machine when it is restored from the saved state file.

Note: The machine must be in the Running or Paused state, otherwise the
operation will fail.

62

9 Classes (interfaces)

See also: takeSnapshot()
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine state neither Running nor
Paused.

• VBOX_E_FILE_ERROR: Failed to create directory for saved state file.

9.4.26 sleepButton
void IConsole::sleepButton()

Sends the ACPI sleep button event to the guest.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

• VBOX_E_PDM_ERROR: Sending sleep button event failed.

9.4.27 takeSnapshot
IProgress IConsole::takeSnapshot(

[in] wstring name,
[in] wstring description)

Saves the current execution state and all settings of the machine and creates differ-
encing images for all normal (non-independent) hard disks.

This method can be called for a PoweredOff, Saved, Running or Paused virtual ma-
chine. When the machine is PoweredOff, an offline ISnapshot is created, in all other
cases – an online snapshot.

The taken snapshot is always based on the current snapshot of the associated virtual
machine and becomes a new current snapshot.

Note: This method implicitly calls IMachine::saveSettings() to save all current
machine settings before taking an offline snapshot.

See also: ISnapshot, saveState()
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine currently changing state.

9.4.28 unregisterCallback
void IConsole::unregisterCallback(

[in] IConsoleCallback callback)

Unregisters the console callback previously registered using registerCallback().
If this method fails, the following error codes may be reported:

• E_INVALIDARG: Given callback handler is not registered.

63

9 Classes (interfaces)

9.5 IConsoleCallback

Note: This interface is not supported in the web service.

9.5.1 onAdditionsStateChange
void IConsoleCallback::onAdditionsStateChange()

Notification when a Guest Additions property changes. Interested callees should
query IGuest attributes to find out what has changed.

9.5.2 onCanShowWindow
boolean IConsoleCallback::onCanShowWindow()

Notification when a call to IMachine::canShowConsoleWindow() is made by a front-
end to check if a subsequent call to IMachine::showConsoleWindow() can succeed.

The callee should give an answer appropriate to the current machine state in the
canShow argument. This answer must remain valid at least until the next machine
state change.

Note: This notification is not designed to be implemented by more than one
callback at a time. If you have multiple IConsoleCallback instances registered
on the given IConsole object, make sure you simply do nothing but return
true and S_OK from all but one of them that actually manages console win-
dow activation.

9.5.3 onDVDDriveChange
void IConsoleCallback::onDVDDriveChange()

Notification when a property of the virtual DVD drive changes. Interested callees
should use IDVDDrive methods to find out what has changed.

9.5.4 onFloppyDriveChange
void IConsoleCallback::onFloppyDriveChange()

Notification when a property of the virtual floppy drive changes. Interested callees
should use IFloppyDrive methods to find out what has changed.

64

9 Classes (interfaces)

9.5.5 onKeyboardLedsChange
void IConsoleCallback::onKeyboardLedsChange(

[in] boolean numLock,
[in] boolean capsLock,
[in] boolean scrollLock)

Notification when the guest OS executes the KBD_CMD_SET_LEDS command to
alter the state of the keyboard LEDs.

9.5.6 onMouseCapabilityChange
void IConsoleCallback::onMouseCapabilityChange(

[in] boolean supportsAbsolute,
[in] boolean needsHostCursor)

Notification when the mouse capabilities reported by the guest have changed. The
new capabilities are passed.

9.5.7 onMousePointerShapeChange
void IConsoleCallback::onMousePointerShapeChange(

[in] boolean visible,
[in] boolean alpha,
[in] unsigned long xHot,
[in] unsigned long yHot,
[in] unsigned long width,
[in] unsigned long height,
[in] octet shape)

Notification when the guest mouse pointer shape has changed. The new shape data
is given.

9.5.8 onNetworkAdapterChange
void IConsoleCallback::onNetworkAdapterChange(

[in] INetworkAdapter networkAdapter)

Notification when a property of one of the virtual network adapters changes. Inter-
ested callees should use INetworkAdapter methods and attributes to find out what has
changed.

9.5.9 onParallelPortChange
void IConsoleCallback::onParallelPortChange(

[in] IParallelPort parallelPort)

Notification when a property of one of the virtual parallel ports changes. Interested
callees should use ISerialPort methods and attributes to find out what has changed.

65

9 Classes (interfaces)

9.5.10 onRuntimeError
void IConsoleCallback::onRuntimeError(

[in] boolean fatal,
[in] wstring id,
[in] wstring message)

Notification when an error happens during the virtual machine execution.
There are three kinds of runtime errors:

• fatal

• non-fatal with retry

• non-fatal warnings

Fatal errors are indicated by the fatal parameter set to true. In case of fatal errors,
the virtual machine execution is always paused before calling this notification, and the
notification handler is supposed either to immediately save the virtual machine state
using IConsole::saveState() or power it off using IConsole::powerDown(). Resuming
the execution can lead to unpredictable results.

Non-fatal errors and warnings are indicated by the fatal parameter set to false.
If the virtual machine is in the Paused state by the time the error notification is re-
ceived, it means that the user can try to resume the machine execution after attempt-
ing to solve the problem that caused the error. In this case, the notification handler
is supposed to show an appropriate message to the user (depending on the value of
the id parameter) that offers several actions such as Retry, Save or Power Off. If the
user wants to retry, the notification handler should continue the machine execution
using the IConsole::resume() call. If the machine execution is not Paused during this
notification, then it means this notification is a warning (for example, about a fatal
condition that can happen very soon); no immediate action is required from the user,
the machine continues its normal execution.

Note that in either case the notification handler must not perform any action di-
rectly on a thread where this notification is called. Everything it is allowed to do
is to post a message to another thread that will then talk to the user and take the
corresponding action.

Currently, the following error identifiers are known:

• "HostMemoryLow"

• "HostAudioNotResponding"

• "VDIStorageFull"

Note: This notification is not designed to be implemented by more than one
callback at a time. If you have multiple IConsoleCallback instances registered
on the given IConsole object, make sure you simply do nothing but return
S_OK from all but one of them that does actual user notification and performs
necessary actions.

66

9 Classes (interfaces)

9.5.11 onSerialPortChange
void IConsoleCallback::onSerialPortChange(

[in] ISerialPort serialPort)

Notification when a property of one of the virtual serial ports changes. Interested
callees should use ISerialPort methods and attributes to find out what has changed.

9.5.12 onSharedFolderChange
void IConsoleCallback::onSharedFolderChange(

[in] Scope scope)

Notification when a shared folder is added or removed. The scope argument de-
fines one of three scopes: global shared folders (Global), permanent shared folders
of the machine (Machine) or transient shared folders of the machine (Session). In-
terested callees should use query the corresponding collections to find out what has
changed.

9.5.13 onShowWindow
unsigned long long IConsoleCallback::onShowWindow()

Notification when a call to IMachine::showConsoleWindow() requests the console
window to be activated and brought to foreground on the desktop of the host PC.

This notification should cause the VM console process to perform the requested
action as described above. If it is impossible to do it at a time of this notification, this
method should return a failure.

Note that many modern window managers on many platforms implement some sort
of focus stealing prevention logic, so that it may be impossible to activate a window
without the help of the currently active application (which is supposedly an initiator
of this notification). In this case, this method must return a non-zero identifier that
represents the top-level window of the VM console process. The caller, if it represents
a currently active process, is responsible to use this identifier (in a platform-dependent
manner) to perform actual window activation.

This method must set winId to zero if it has performed all actions necessary to
complete the request and the console window is now active and in foreground, to
indicate that no further action is required on the caller’s side.

Note: This notification is not designed to be implemented by more than one
callback at a time. If you have multiple IConsoleCallback instances registered
on the given IConsole object, make sure you simply do nothing but return
S_OK from all but one of them that actually manages console window activa-
tion.

67

9 Classes (interfaces)

9.5.14 onStateChange
void IConsoleCallback::onStateChange(

[in] MachineState state)

Notification when the execution state of the machine has changed. The new state
will be given.

9.5.15 onStorageControllerChange
void IConsoleCallback::onStorageControllerChange()

Notification when a property of one of the virtual storage controllers changes. Inter-
ested callees should query the corresponding collections to find out what has changed.

9.5.16 onUSBControllerChange
void IConsoleCallback::onUSBControllerChange()

Notification when a property of the virtual USB controller changes. Interested
callees should use IUSBController methods and attributes to find out what has
changed.

9.5.17 onUSBDeviceStateChange
void IConsoleCallback::onUSBDeviceStateChange(

[in] IUSBDevice device,
[in] boolean attached,
[in] IVirtualBoxErrorInfo error)

Notification when a USB device is attached to or detached from the virtual USB
controller.

This notification is sent as a result of the indirect request to attach the device because
it matches one of the machine USB filters, or as a result of the direct request issued by
IConsole::attachUSBDevice() or IConsole::detachUSBDevice().

This notification is sent in case of both a succeeded and a failed request completion.
When the request succeeds, the error parameter is null, and the given device has
been already added to (when attached is true) or removed from (when attached
is false) the collection represented by IConsole::USBDevices[]. On failure, the col-
lection doesn’t change and the error parameter represents the error message describ-
ing the failure.

9.5.18 onVRDPServerChange
void IConsoleCallback::onVRDPServerChange()

Notification when a property of the VRDP server changes. Interested callees should
use IVRDPServer methods and attributes to find out what has changed.

68

9 Classes (interfaces)

9.6 IDHCPServer

The IDHCPServer interface represents the vbox dhcp server configuration.
To enumerate all the dhcp servers on the host, use the IVirtualBox::DHCPServers[]

attribute.

9.6.1 Attributes

9.6.1.1 enabled (read/write)

boolean IDHCPServer::enabled

specifies if the dhcp server is enabled

9.6.1.2 IPAddress (read-only)

wstring IDHCPServer::IPAddress

specifies server IP

9.6.1.3 networkMask (read-only)

wstring IDHCPServer::networkMask

specifies server network mask

9.6.1.4 networkName (read-only)

wstring IDHCPServer::networkName

specifies internal network name the server is used for

9.6.1.5 lowerIP (read-only)

wstring IDHCPServer::lowerIP

specifies from IP adrres in server address range

9.6.1.6 upperIP (read-only)

wstring IDHCPServer::upperIP

specifies to IP adrres in server address range

69

9 Classes (interfaces)

9.6.2 setConfiguration
void IDHCPServer::setConfiguration(

[in] wstring IPAddress,
[in] wstring networkMask,
[in] wstring FromIPAddress,
[in] wstring ToIPAddress)

configures the server
If this method fails, the following error codes may be reported:

• E_INVALIDARG: invalid configuration supplied

9.6.3 start
void IDHCPServer::start(

[in] wstring networkName,
[in] wstring trunkName,
[in] wstring trunkType)

Starts DHCP server process.
If this method fails, the following error codes may be reported:

• E_FAIL: Failed to start the process.

9.6.4 stop
void IDHCPServer::stop()

Stops DHCP server process.
If this method fails, the following error codes may be reported:

• E_FAIL: Failed to stop the process.

9.7 IDVDDrive

The IDVDDrive interface represents the virtual CD/DVD drive of the virtual machine.
An object of this type is returned by IMachine::DVDDrive.

9.7.1 Attributes

9.7.1.1 state (read-only)

DriveState IDVDDrive::state

Current drive state.

70

9 Classes (interfaces)

9.7.1.2 passthrough (read/write)

boolean IDVDDrive::passthrough

When a host drive is mounted and passthrough is enabled the guest OS will be able
to directly send SCSI commands to the host drive. This enables the guest OS to use
CD/DVD writers but is potentially dangerous.

9.7.2 captureHostDrive
void IDVDDrive::captureHostDrive(

[in] IHostDVDDrive drive)

Captures the specified host CD/DVD drive.

9.7.3 getHostDrive
IHostDVDDrive IDVDDrive::getHostDrive()

Returns the currently mounted host CD/DVD drive.

9.7.4 getImage
IDVDImage IDVDDrive::getImage()

Returns the currently mounted CD/DVD image.

9.7.5 mountImage
void IDVDDrive::mountImage(

[in] uuid imageId)

Mounts a CD/DVD image with the specified UUID.
If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Invalid image file location.

• VBOX_E_OBJECT_NOT_FOUND: Could not find a CD/DVD image matching
imageId.

• VBOX_E_INVALID_OBJECT_STATE: Invalid media state.

9.7.6 unmount
void IDVDDrive::unmount()

Unmounts the currently mounted image or host drive.

71

9 Classes (interfaces)

9.8 IDVDImage

The IDVDImage interface represents a medium containing the image of a CD or DVD
disk in the ISO format.

This is a subclass of IMedium; see remarks there.

9.9 IDisplay

Note: This interface is not supported in the web service.

The IDisplay interface represents the virtual machine’s display.
The object implementing this interface is contained in each IConsole::display at-

tribute and represents the visual output of the virtual machine.
The virtual display supports pluggable output targets represented by the IFrame-

buffer interface. Examples of the output target are a window on the host computer or
an RDP session’s display on a remote computer.

9.9.1 Attributes

9.9.1.1 width (read-only)

unsigned long IDisplay::width

Current display width.

9.9.1.2 height (read-only)

unsigned long IDisplay::height

Current display height.

9.9.1.3 bitsPerPixel (read-only)

unsigned long IDisplay::bitsPerPixel

Current guest display color depth. Note that this may differ from IFrame-
buffer::bitsPerPixel.

9.9.2 drawToScreen
void IDisplay::drawToScreen(

[in] octet address,
[in] unsigned long x,
[in] unsigned long y,
[in] unsigned long width,
[in] unsigned long height)

72

9 Classes (interfaces)

Draws a 32-bpp image of the specified size from the given buffer to the given point
on the VM display.

If this method fails, the following error codes may be reported:

• E_NOTIMPL: Feature not implemented.

• VBOX_E_IPRT_ERROR: Could not draw to screen.

9.9.3 getFramebuffer
void IDisplay::getFramebuffer(

[in] unsigned long screenId,
[out] IFramebuffer framebuffer,
[out] long xOrigin,
[out] long yOrigin)

Queries the framebuffer for given screen.

9.9.4 invalidateAndUpdate
void IDisplay::invalidateAndUpdate()

Does a full invalidation of the VM display and instructs the VM to update it.
If this method fails, the following error codes may be reported:

• VBOX_E_IPRT_ERROR: Could not invalidate and update screen.

9.9.5 lockFramebuffer
octet IDisplay::lockFramebuffer()

Requests access to the internal frame buffer.
If this method fails, the following error codes may be reported:

• VBOX_E_NOT_SUPPORTED: Attempt to lock a non-internal frame buffer.

9.9.6 registerExternalFramebuffer
void IDisplay::registerExternalFramebuffer(

[in] IFramebuffer framebuffer)

Registers an external frame buffer.

73

9 Classes (interfaces)

9.9.7 resizeCompleted
void IDisplay::resizeCompleted(

[in] unsigned long screenId)

Signals that a framebuffer has completed the resize operation.
If this method fails, the following error codes may be reported:

• VBOX_E_NOT_SUPPORTED: Operation only valid for external frame buffers.

9.9.8 setFramebuffer
void IDisplay::setFramebuffer(

[in] unsigned long screenId,
[in] IFramebuffer framebuffer)

Sets the framebuffer for given screen.

9.9.9 setSeamlessMode
void IDisplay::setSeamlessMode(

[in] boolean enabled)

Enables or disables seamless guest display rendering (seamless desktop integration)
mode.

Note: Calling this method has no effect if IGuest::supportsSeamless returns
false.

9.9.10 setVideoModeHint
void IDisplay::setVideoModeHint(

[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bitsPerPixel,
[in] unsigned long display)

Asks VirtualBox to request the given video mode from the guest. This is just a
hint and it cannot be guaranteed that the requested resolution will be used. Guest
Additions are required for the request to be seen by guests. The caller should issue the
request and wait for a resolution change and after a timeout retry.

Specifying 0 for either width, height or bitsPerPixel parameters means that
the corresponding values should be taken from the current video mode (i.e. left un-
changed).

If the guest OS supports multi-monitor configuration then the display parameter
specifies the number of the guest display to send the hint to: 0 is the primary display,

74

9 Classes (interfaces)

1 is the first secondary and so on. If the multi-monitor configuration is not supported,
display must be 0.

If this method fails, the following error codes may be reported:

• E_INVALIDARG: The display is not associated with any monitor.

9.9.11 setupInternalFramebuffer
void IDisplay::setupInternalFramebuffer(

[in] unsigned long depth)

Prepares an internally managed frame buffer.

9.9.12 takeScreenShot
void IDisplay::takeScreenShot(

[in] octet address,
[in] unsigned long width,
[in] unsigned long height)

Takes a screen shot of the requested size and copies it to the 32-bpp buffer allocated
by the caller.

If this method fails, the following error codes may be reported:

• E_NOTIMPL: Feature not implemented.

• VBOX_E_IPRT_ERROR: Could not take a screenshot.

9.9.13 unlockFramebuffer
void IDisplay::unlockFramebuffer()

Releases access to the internal frame buffer.
If this method fails, the following error codes may be reported:

• VBOX_E_NOT_SUPPORTED: Attempt to unlock a non-internal frame buffer.

9.9.14 updateCompleted
void IDisplay::updateCompleted()

Signals that a framebuffer has completed the update operation.
If this method fails, the following error codes may be reported:

• VBOX_E_NOT_SUPPORTED: Operation only valid for external frame buffers.

75

9 Classes (interfaces)

9.10 IFloppyDrive

The IFloppyDrive interface represents the virtual floppy drive of the virtual machine.
An object of this type is returned by IMachine::floppyDrive.

9.10.1 Attributes

9.10.1.1 enabled (read/write)

boolean IFloppyDrive::enabled

Flag whether the floppy drive is enabled. If it is disabled, the floppy drive will not
be reported to the guest OS.

9.10.1.2 state (read-only)

DriveState IFloppyDrive::state

Current drive state.

9.10.2 captureHostDrive
void IFloppyDrive::captureHostDrive(

[in] IHostFloppyDrive drive)

Captures the specified host floppy drive.

9.10.3 getHostDrive
IHostFloppyDrive IFloppyDrive::getHostDrive()

Returns the currently mounted host floppy drive.

9.10.4 getImage
IFloppyImage IFloppyDrive::getImage()

Returns the currently mounted floppy image.

9.10.5 mountImage
void IFloppyDrive::mountImage(

[in] uuid imageId)

Mounts a floppy image with the specified UUID.
If this method fails, the following error codes may be reported:

76

9 Classes (interfaces)

• VBOX_E_FILE_ERROR: Invalid image file location.

• VBOX_E_OBJECT_NOT_FOUND: Could not find a floppy image matching
imageID.

• VBOX_E_INVALID_OBJECT_STATE: Invalid media state.

9.10.6 unmount
void IFloppyDrive::unmount()

Unmounts the currently mounted image or host drive.

9.11 IFloppyImage

The IFloppyImage interface represents a medium containing the image of a floppy
disk. This is a subclass of IMedium; see remarks there.

9.12 IFramebuffer

Note: This interface is not supported in the web service.

9.12.1 Attributes

9.12.1.1 address (read-only)

octet IFramebuffer::address

Address of the start byte of the frame buffer.

9.12.1.2 width (read-only)

unsigned long IFramebuffer::width

Frame buffer width, in pixels.

9.12.1.3 height (read-only)

unsigned long IFramebuffer::height

Frame buffer height, in pixels.

77

9 Classes (interfaces)

9.12.1.4 bitsPerPixel (read-only)

unsigned long IFramebuffer::bitsPerPixel

Color depth, in bits per pixel. When pixelFormat is FOURCC_RGB, valid values are:
8, 15, 16, 24 and 32.

9.12.1.5 bytesPerLine (read-only)

unsigned long IFramebuffer::bytesPerLine

Scan line size, in bytes. When pixelFormat is FOURCC_RGB, the size of the scan line
must be aligned to 32 bits.

9.12.1.6 pixelFormat (read-only)

unsigned long IFramebuffer::pixelFormat

Frame buffer pixel format. It’s either one of the values defined by FramebufferPix-
elFormat or a raw FOURCC code.

Note: This attribute must never return :: – the format of the buffer address
points to must be always known.

9.12.1.7 usesGuestVRAM (read-only)

boolean IFramebuffer::usesGuestVRAM

Defines whether this frame buffer uses the virtual video card’s memory buffer (guest
VRAM) directly or not. See requestResize() for more information.

9.12.1.8 heightReduction (read-only)

unsigned long IFramebuffer::heightReduction

Hint from the frame buffer about how much of the standard screen height it wants
to use for itself. This information is exposed to the guest through the VESA BIOS and
VMMDev interface so that it can use it for determining its video mode table. It is not
guaranteed that the guest respects the value.

78

9 Classes (interfaces)

9.12.1.9 overlay (read-only)

IFramebufferOverlay IFramebuffer::overlay

Note: This attribute is not supported in the web service.

An alpha-blended overlay which is superposed over the frame buffer. The initial
purpose is to allow the display of icons providing information about the VM state,
including disk activity, in front ends which do not have other means of doing that.
The overlay is designed to controlled exclusively by IDisplay. It has no locking of its
own, and any changes made to it are not guaranteed to be visible until the affected
portion of IFramebuffer is updated. The overlay can be created lazily the first time
it is requested. This attribute can also return NULL to signal that the overlay is not
implemented.

9.12.1.10 winId (read-only)

unsigned long long IFramebuffer::winId

Platform-dependent identifier of the window where context of this frame buffer is
drawn, or zero if there’s no such window.

9.12.2 copyScreenBits
boolean IFramebuffer::copyScreenBits(

[in] unsigned long xDst,
[in] unsigned long yDst,
[in] unsigned long xSrc,
[in] unsigned long ySrc,
[in] unsigned long width,
[in] unsigned long height)

Copies specified rectangle on the screen.

9.12.3 getVisibleRegion
unsigned long IFramebuffer::getVisibleRegion(

[in] octet rectangles,
[in] unsigned long count)

Returns the visible region of this frame buffer.
If the rectangles parameter is NULL then the value of the count parameter is

ignored and the number of elements necessary to describe the current visible region is
returned in countCopied.

79

9 Classes (interfaces)

If rectangles is not NULL but count is less than the required number of elements
to store region data, the method will report a failure. If count is equal or greater than
the required number of elements, then the actual number of elements copied to the
provided array will be returned in countCopied.

Note: The address of the provided array must be in the process space of this
IFramebuffer object.

Note: Method not yet implemented.

9.12.4 lock
void IFramebuffer::lock()

Locks the frame buffer. Gets called by the IDisplay object where this frame buffer is
bound to.

9.12.5 notifyUpdate
boolean IFramebuffer::notifyUpdate(

[in] unsigned long x,
[in] unsigned long y,
[in] unsigned long width,
[in] unsigned long height)

Informs about an update. Gets called by the display object where this buffer is
registered.

9.12.6 operationSupported
boolean IFramebuffer::operationSupported(

[in] FramebufferAccelerationOperation operation)

Returns whether the given acceleration operation is supported by the IFramebuffer
implementation. If not, the display object will not attempt to call the correspond-
ing IFramebuffer entry point. Even if an operation is indicated as supported, the
IFramebuffer implementation always has the option to return non supported from the
corresponding acceleration method in which case the operation will be performed by
the display engine. This allows for reduced IFramebuffer implementation complexity
where only common cases are handled.

80

9 Classes (interfaces)

9.12.7 requestResize
boolean IFramebuffer::requestResize(

[in] unsigned long screenId,
[in] unsigned long pixelFormat,
[in] octet VRAM,
[in] unsigned long bitsPerPixel,
[in] unsigned long bytesPerLine,
[in] unsigned long width,
[in] unsigned long height)

Requests a size and pixel format change.
There are two modes of working with the video buffer of the virtual machine. The

indirect mode implies that the IFramebuffer implementation allocates a memory buffer
for the requested display mode and provides it to the virtual machine. In direct mode,
the IFramebuffer implementation uses the memory buffer allocated and owned by
the virtual machine. This buffer represents the video memory of the emulated video
adapter (so called guest VRAM). The direct mode is usually faster because the imple-
mentation gets a raw pointer to the guest VRAM buffer which it can directly use for
visualizing the contents of the virtual display, as opposed to the indirect mode where
the contents of guest VRAM are copied to the memory buffer provided by the imple-
mentation every time a display update occurs.

It is important to note that the direct mode is really fast only when the implemen-
tation uses the given guest VRAM buffer directly, for example, by blitting it to the
window representing the virtual machine’s display, which saves at least one copy oper-
ation comparing to the indirect mode. However, using the guest VRAM buffer directly
is not always possible: the format and the color depth of this buffer may be not sup-
ported by the target window, or it may be unknown (opaque) as in case of text or
non-linear multi-plane VGA video modes. In this case, the indirect mode (that is al-
ways available) should be used as a fallback: when the guest VRAM contents are
copied to the implementation-provided memory buffer, color and format conversion is
done automatically by the underlying code.

The pixelFormat parameter defines whether the direct mode is available or not.
If pixelFormat is :: then direct access to the guest VRAM buffer is not available
– the VRAM, bitsPerPixel and bytesPerLine parameters must be ignored and
the implementation must use the indirect mode (where it provides its own buffer
in one of the supported formats). In all other cases, pixelFormat together with
bitsPerPixel and bytesPerLine define the format of the video memory buffer
pointed to by the VRAM parameter and the implementation is free to choose which
mode to use. To indicate that this frame buffer uses the direct mode, the implemen-
tation of the usesGuestVRAM attribute must return true and address must return
exactly the same address that is passed in the VRAM parameter of this method; other-
wise it is assumed that the indirect strategy is chosen.

The width and height parameters represent the size of the requested display
mode in both modes. In case of indirect mode, the provided memory buffer should
be big enough to store data of the given display mode. In case of direct mode, it is

81

9 Classes (interfaces)

guaranteed that the given VRAM buffer contains enough space to represent the display
mode of the given size. Note that this frame buffer’s width and height attributes must
return exactly the same values as passed to this method after the resize is completed
(see below).

The finished output parameter determines if the implementation has finished
resizing the frame buffer or not. If, for some reason, the resize cannot be finished
immediately during this call, finished must be set to false, and the implementa-
tion must call IDisplay::resizeCompleted() after it has returned from this method as
soon as possible. If finished is false, the machine will not call any frame buffer
methods until IDisplay::resizeCompleted() is called.

Note that if the direct mode is chosen, the bitsPerPixel, bytesPerLine and pixelFormat
attributes of this frame buffer must return exactly the same values as specified in the
parameters of this method, after the resize is completed. If the indirect mode is chosen,
these attributes must return values describing the format of the implementation’s own
memory buffer address points to. Note also that the bitsPerPixel value must always
correlate with pixelFormat. Note that the pixelFormat attribute must never return ::
regardless of the selected mode.

Note: This method is called by the IDisplay object under the lock() pro-
vided by this IFramebuffer implementation. If this method returns false
in finished, then this lock is not released until IDisplay::resizeCompleted()
is called.

9.12.8 setVisibleRegion
void IFramebuffer::setVisibleRegion(

[in] octet rectangles,
[in] unsigned long count)

Suggests a new visible region to this frame buffer. This region represents the area
of the VM display which is a union of regions of all top-level windows of the guest
operating system running inside the VM (if the Guest Additions for this system support
this functionality). This information may be used by the frontends to implement the
seamless desktop integration feature.

Note: The address of the provided array must be in the process space of this
IFramebuffer object.

Note: The IFramebuffer implementation must make a copy of the provided
array of rectangles.

82

9 Classes (interfaces)

Note: Method not yet implemented.

9.12.9 solidFill
boolean IFramebuffer::solidFill(

[in] unsigned long x,
[in] unsigned long y,
[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long color)

Fills the specified rectangle on screen with a solid color.

9.12.10 unlock
void IFramebuffer::unlock()

Unlocks the frame buffer. Gets called by the IDisplay object where this frame buffer
is bound to.

9.12.11 videoModeSupported
boolean IFramebuffer::videoModeSupported(

[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bpp)

Returns whether the frame buffer implementation is willing to support a given video
mode. In case it is not able to render the video mode (or for some reason not willing),
it should return false. Usually this method is called when the guest asks the VMM
device whether a given video mode is supported so the information returned is directly
exposed to the guest. It is important that this method returns very quickly.

9.13 IFramebufferOverlay

Note: This interface is not supported in the web service.

The IFramebufferOverlay interface represents an alpha blended overlay for display-
ing status icons above an IFramebuffer. It is always created not visible, so that it must
be explicitly shown. It only covers a portion of the IFramebuffer, determined by its
width, height and co-ordinates. It is always in packed pixel little-endian 32bit ARGB
(in that order) format, and may be written to directly. Do re-read the width though,
after setting it, as it may be adjusted (increased) to make it more suitable for the front
end.

83

9 Classes (interfaces)

9.13.1 Attributes

9.13.1.1 x (read-only)

unsigned long IFramebufferOverlay::x

X position of the overlay, relative to the frame buffer.

9.13.1.2 y (read-only)

unsigned long IFramebufferOverlay::y

Y position of the overlay, relative to the frame buffer.

9.13.1.3 visible (read/write)

boolean IFramebufferOverlay::visible

Whether the overlay is currently visible.

9.13.1.4 alpha (read/write)

unsigned long IFramebufferOverlay::alpha

The global alpha value for the overlay. This may or may not be supported by a given
front end.

9.13.2 move
void IFramebufferOverlay::move(

[in] unsigned long x,
[in] unsigned long y)

Changes the overlay’s position relative to the IFramebuffer.

9.14 IGuest

Note: This interface is not supported in the web service.

The IGuest interface represents information about the operating system running
inside the virtual machine. Used in IConsole::guest.

IGuest provides information about the guest operating system, whether Guest Addi-
tions are installed and other OS-specific virtual machine properties.

84

9 Classes (interfaces)

9.14.1 Attributes

9.14.1.1 OSTypeId (read-only)

wstring IGuest::OSTypeId

Identifier of the Guest OS type as reported by the Guest Additions. You may use
IVirtualBox::getGuestOSType() to obtain an IGuestOSType object representing details
about the given Guest OS type.

Note: If Guest Additions are not installed, this value will be the same as
IMachine::OSTypeId.

9.14.1.2 additionsActive (read-only)

boolean IGuest::additionsActive

Flag whether the Guest Additions are installed and active in which case their version
will be returned by the additionsVersion property.

9.14.1.3 additionsVersion (read-only)

wstring IGuest::additionsVersion

Version of the Guest Additions (3 decimal numbers separated by dots) or empty
when the Additions are not installed. The Additions may also report a version but yet
not be active as the version might be refused by VirtualBox (incompatible) or other
failures occurred.

9.14.1.4 supportsSeamless (read-only)

boolean IGuest::supportsSeamless

Flag whether seamless guest display rendering (seamless desktop integration) is
supported.

9.14.1.5 supportsGraphics (read-only)

boolean IGuest::supportsGraphics

Flag whether the guest is in graphics mode. If it is not, then seamless rendering
will not work, resize hints are not immediately acted on and guest display resizes are
probably not initiated by the guest additions.

85

9 Classes (interfaces)

9.14.1.6 memoryBalloonSize (read/write)

unsigned long IGuest::memoryBalloonSize

Guest system memory balloon size in megabytes.

9.14.1.7 statisticsUpdateInterval (read/write)

unsigned long IGuest::statisticsUpdateInterval

Interval to update guest statistics in seconds.

9.14.2 getStatistic
void IGuest::getStatistic(

[in] unsigned long cpuId,
[in] GuestStatisticType statistic,
[out] unsigned long statVal)

Query specified guest statistics as reported by the VirtualBox Additions.

9.14.3 setCredentials
void IGuest::setCredentials(

[in] wstring userName,
[in] wstring password,
[in] wstring domain,
[in] boolean allowInteractiveLogon)

Store login credentials that can be queried by guest operating systems with Addi-
tions installed. The credentials are transient to the session and the guest may also
choose to erase them. Note that the caller cannot determine whether the guest oper-
ating system has queried or made use of the credentials.

If this method fails, the following error codes may be reported:

• VBOX_E_VM_ERROR: VMM device is not available.

9.15 IGuestOSType

Note: With the web service, this interface is mapped to a structure. Attributes
that return this interface will not return an object, but a complete structure
containing the attributes listed below as structure members.

86

9 Classes (interfaces)

9.15.1 Attributes

9.15.1.1 familyId (read-only)

wstring IGuestOSType::familyId

Guest OS family identifier string.

9.15.1.2 familyDescription (read-only)

wstring IGuestOSType::familyDescription

Human readable description of the guest OS family.

9.15.1.3 id (read-only)

wstring IGuestOSType::id

Guest OS identifier string.

9.15.1.4 description (read-only)

wstring IGuestOSType::description

Human readable description of the guest OS.

9.15.1.5 is64Bit (read-only)

boolean IGuestOSType::is64Bit

Returns true if the given OS is 64-bit

9.15.1.6 recommendedIOAPIC (read-only)

boolean IGuestOSType::recommendedIOAPIC

Returns true if IO APIC recommended for this OS type.

9.15.1.7 recommendedVirtEx (read-only)

boolean IGuestOSType::recommendedVirtEx

Returns true if VT-x or AMD-V recommended for this OS type.

9.15.1.8 recommendedRAM (read-only)

unsigned long IGuestOSType::recommendedRAM

Recommended RAM size in Megabytes.

87

9 Classes (interfaces)

9.15.1.9 recommendedVRAM (read-only)

unsigned long IGuestOSType::recommendedVRAM

Recommended video RAM size in Megabytes.

9.15.1.10 recommendedHDD (read-only)

unsigned long IGuestOSType::recommendedHDD

Recommended hard disk size in Megabytes.

9.15.1.11 adapterType (read-only)

NetworkAdapterType IGuestOSType::adapterType

Returns recommended network adapter for this OS type.

9.16 IHardDisk

The IHardDisk interface represents a virtual hard disk drive used by a virtual machine.
This is a subclass of IMedium; see remarks there.

Virtual hard disk objects virtualize the hard disk hardware and look like regular hard
disks for the guest OS running inside the virtual machine.

Hard Disk Types
There are three types of hard disks: Normal, Immutable and Writethrough. The

type of the hard disk defines how the hard disk is attached to a virtual machine and
what happens when a ISnapshot of the virtual machine with the attached hard disk is
taken. The type of the hard disk is defined by the type attribute.

All hard disks can be also divided in two big groups: base hard disks and differencing
hard disks. A base hard disk contains all sectors of the hard disk data in its storage
unit and therefore can be used independently. On the contrary, a differencing hard
disk contains only some part of the hard disk data (a subset of sectors) and needs
another hard disk to get access to the missing sectors of data. This another hard disk
is called a parent hard disk and defines a hard disk to which this differencing hard disk
is known to be linked to. The parent hard disk may be itself a differencing hard disk.
This way, differencing hard disks form a linked hard disk chain. This chain always
ends with the base hard disk which is sometimes referred to as the root hard disk of
this chain. Note that several differencing hard disks may be linked to the same parent
hard disk. This way, all known hard disks form a hard disk tree which is based on their
parent-child relationship.

Differencing hard disks can be distinguished from base hard disks by querying the
parent attribute: base hard disks do not have parents they would depend on, so the
value of this attribute is always null for them. Using this attribute, it is possible to
walk up the hard disk tree (from the child hard disk to its parent). It is also possible
to walk down the tree using the children[] attribute.

88

9 Classes (interfaces)

Note that the type of all differencing hard disks is Normal; all other values are
meaningless for them. Base hard disks may be of any type.

Creating Hard Disks
New base hard disks are created using IVirtualBox::createHardDisk(). Existing hard

disks are opened using IVirtualBox::openHardDisk(). Differencing hard disks are usu-
ally implicitly created by VirtualBox when needed but may also be created explicitly
using createDiffStorage().

After the hard disk is successfully created (including the storage unit) or opened,
it becomes a known hard disk (remembered in the internal media registry).
Known hard disks can be attached to a virtual machine, accessed through IVirtu-
alBox::getHardDisk() and IVirtualBox::findHardDisk() methods or enumerated using
the IVirtualBox::hardDisks[] array (only for base hard disks).

The following methods, besides IMedium::close(), automatically remove the hard
disk from the media registry:

• deleteStorage()

• mergeTo()

If the storage unit of the hard disk is a regular file in the host’s file system then the
rules stated in the description of the IMedium::location attribute apply when setting
its value. In addition, a plain file name without any path may be given, in which case
the default hard disk folder will be prepended to it.

Automatic composition of the file name part
Another extension to the IMedium::location attribute is that there is a possibility

to cause VirtualBox to compose a unique value for the file name part of the location
using the UUID of the hard disk. This applies only to hard disks in :: state, e.g.
before the storage unit is created, and works as follows. You set the value of the
IMedium::location attribute to a location specification which only contains the path
specification but not the file name part and ends with either a forward slash or a
backslash character. In response, VirtualBox will generate a new UUID for the hard
disk and compose the file name using the following pattern:

<path>/{<uuid>}.<ext>

where <path> is the supplied path specification, <uuid> is the newly generated
UUID and <ext> is the default extension for the storage format of this hard disk.
After that, you may call any of the methods that create a new hard disk storage unit
and they will use the generated UUID and file name.

Attaching Hard Disks
Hard disks are attached to virtual machines using the IMachine::attachHardDisk()

method and detached using the IMachine::detachHardDisk() method. Depending on
their type, hard disks are attached either directly or indirectly.

When a hard disk is being attached directly, it is associated with the virtual machine
and used for hard disk operations when the machine is running. When a hard disk

89

9 Classes (interfaces)

is being attached indirectly, a new differencing hard disk linked to it is implicitly cre-
ated and this differencing hard disk is associated with the machine and used for hard
disk operations. This also means that if IMachine::attachHardDisk() performs a direct
attachment then the same hard disk will be returned in response to the subsequent
IMachine::getHardDisk() call; however if an indirect attachment is performed then
IMachine::getHardDisk() will return the implicitly created differencing hard disk, not
the original one passed to IMachine::attachHardDisk(). The following table shows the
dependency of the attachment type on the hard disk type:

Hard Disk TypeDirect or Indirect?Normal (Base) Normal base hard disks that do not
have children (i.e. differencing hard disks linked to them) and that are not already
attached to virtual machines in snapshots are attached directly. Otherwise, they are
attached indirectly because having dependent children or being part of the snapshot
makes it impossible to modify hard disk contents without breaking the integrity of the
dependent party. The readOnly attribute allows to quickly determine the kind of the
attachment for the given hard disk. Note that if a normal base hard disk is to be in-
directly attached to a virtual machine with snapshots then a special procedure called
smart attachment is performed (see below). Normal (Differencing) Differencing hard
disks are like normal base hard disks: attached directly if they do not have children
and are not attached to virtual machines in snapshots, and indirectly otherwise. Note
that the smart attachment procedure is never performed for differencing hard disks.
Immutable Immutable hard disks are always attached indirectly because they are de-
signed to be non-writable. If an immutable hard disk is attached to a virtual machine
with snapshots then a special procedure called smart attachment is performed (see
below). Writethrough Writethrough hard disks are always attached directly, also as
designed. This also means that writethrough hard disks cannot have other hard disks
linked to them at all.

Note that the same hard disk, regardless of its type, may be attached to more than
one virtual machine at a time. In this case, the machine that is started first gains
exclusive access to the hard disk and attempts to start other machines having this hard
disk attached will fail until the first machine is powered down.

Detaching hard disks is performed in a deferred fashion. This means that the
given hard disk remains associated with the given machine after a successful IMa-
chine::detachHardDisk() call until IMachine::saveSettings() is called to save all
changes to machine settings to disk. This deferring is necessary to guarantee
that the hard disk configuration may be restored at any time by a call to IMa-
chine::discardSettings() before the settings are saved (committed).

Note that if IMachine::discardSettings() is called after indirectly attaching some
hard disks to the machine but before a call to IMachine::saveSettings() is made,
it will implicitly delete all differencing hard disks implicitly created by IMa-
chine::attachHardDisk() for these indirect attachments. Such implicitly created
hard disks will also be immediately deleted when detached explicitly using the IMa-
chine::detachHardDisk() call if it is made before IMachine::saveSettings(). This
implicit deletion is safe because newly created differencing hard disks do not contain
any user data.

90

9 Classes (interfaces)

However, keep in mind that detaching differencing hard disks that were implicitly
created by IMachine::attachHardDisk() before the last IMachine::saveSettings() call
will not implicitly delete them as they may already contain some data (for example,
as a result of virtual machine execution). If these hard disks are no more necessary, the
caller can always delete them explicitly using deleteStorage() after they are actually
de-associated from this machine by the IMachine::saveSettings() call.

Smart Attachment
When normal base or immutable hard disks are indirectly attached to a virtual ma-

chine then some additional steps are performed to make sure the virtual machine will
have the most recent “view” of the hard disk being attached. These steps include walk-
ing through the machine’s snapshots starting from the current one and going through
ancestors up to the first snapshot. Hard disks attached to the virtual machine in all
of the encountered snapshots are checked whether they are descendants of the given
normal base or immutable hard disk. The first found child (which is the differencing
hard disk) will be used instead of the normal base or immutable hard disk as a parent
for creating a new differencing hard disk that will be actually attached to the machine.
And only if no descendants are found or if the virtual machine does not have any snap-
shots then the normal base or immutable hard disk will be used itself as a parent for
this differencing hard disk.

It is easier to explain what smart attachment does using the following example:

BEFORE attaching B.vdi: AFTER attaching B.vdi:

Snapshot 1 (B.vdi) Snapshot 1 (B.vdi)
Snapshot 2 (D1->B.vdi) Snapshot 2 (D1->B.vdi)
Snapshot 3 (D2->D1.vdi) Snapshot 3 (D2->D1.vdi)
Snapshot 4 (none) Snapshot 4 (none)
CurState (none) CurState (D3->D2.vdi)

NOT
...
CurState (D3->B.vdi)

The first column is the virtual machine configuration before the base hard disk
B.vdi is attached, the second column shows the machine after this hard disk is at-
tached. Constructs like D1->B.vdi and similar mean that the hard disk that is actu-
ally attached to the machine is a differencing hard disk, D1.vdi, which is linked to
(based on) another hard disk, B.vdi.

As we can see from the example, the hard disk B.vdi was detached from the ma-
chine before taking Snapshot 4. Later, after Snapshot 4 was taken, the user decides
to attach B.vdi again. B.vdi has dependent child hard disks (D1.vdi, D2.vdi),
therefore it cannot be attached directly and needs an indirect attachment (i.e. implicit
creation of a new differencing hard disk). Due to the smart attachment procedure, the
new differencing hard disk (D3.vdi) will be based on D2.vdi, not on B.vdi itself,
since D2.vdi is the most recent view of B.vdi existing for this snapshot branch of
the given virtual machine.

91

9 Classes (interfaces)

Note that if there is more than one descendant hard disk of the given base hard disk
found in a snapshot, and there is an exact device, channel and bus match, then this
exact match will be used. Otherwise, the youngest descendant will be picked up.

There is one more important aspect of the smart attachment procedure which
is not related to snapshots at all. Before walking through the snapshots as de-
scribed above, the backup copy of the current list of hard disk attachment is searched
for descendants. This backup copy is created when the hard disk configuration is
changed for the first time after the last IMachine::saveSettings() call and used by IMa-
chine::discardSettings() to undo the recent hard disk changes. When such a descen-
dant is found in this backup copy, it will be simply re-attached back, without creating
a new differencing hard disk for it. This optimization is necessary to make it possi-
ble to re-attach the base or immutable hard disk to a different bus, channel or device
slot without losing the contents of the differencing hard disk actually attached to the
machine in place of it.

9.16.1 Attributes

9.16.1.1 format (read-only)

wstring IHardDisk::format

Storage format of this hard disk.
The value of this attribute is a string that specifies a backend used to store hard disk

data. The storage format is defined when you create a new hard disk or automatically
detected when you open an existing hard disk medium, and cannot be changed later.

The list of all storage formats supported by this VirtualBox installation can be ob-
tained using ISystemProperties::hardDiskFormats[].

9.16.1.2 type (read/write)

HardDiskType IHardDisk::type

Type (role) of this hard disk.
The following constraints apply when changing the value of this attribute:

• If a hard disk is attached to a virtual machine (either in the current state or in
one of the snapshots), its type cannot be changed.

• As long as the hard disk has children, its type cannot be set to ::.

• The type of all differencing hard disks is :: and cannot be changed.

The type of a newly created or opened hard disk is set to ::.

92

9 Classes (interfaces)

9.16.1.3 parent (read-only)

IHardDisk IHardDisk::parent

Parent of this hard disk (a hard disk this hard disk is directly based on).
Only differencing hard disks have parents. For base (non-differencing) hard disks,

null is returned.

9.16.1.4 children (read-only)

IHardDisk IHardDisk::children[]

Children of this hard disk (all differencing hard disks directly based on this hard
disk). A null array is returned if this hard disk does not have any children.

9.16.1.5 root (read-only)

IHardDisk IHardDisk::root

Root hard disk of this hard disk.
If this is a differencing hard disk, its root hard disk is the base hard disk the given

hard disk branch starts from. For all other types of hard disks, this property returns
the hard disk object itself (i.e. the same object this property is read on).

9.16.1.6 readOnly (read-only)

boolean IHardDisk::readOnly

Returns true if this hard disk is read-only and false otherwise.
A hard disk is considered to be read-only when its contents cannot be modified

without breaking the integrity of other parties that depend on this hard disk such as
its child hard disks or snapshots of virtual machines where this hard disk is attached
to these machines. If there are no children and no such snapshots then there is no
dependency and the hard disk is not read-only.

The value of this attribute can be used to determine the kind of the attachment
that will take place when attaching this hard disk to a virtual machine. If the value is
false then the hard disk will be attached directly. If the value is true then the hard
disk will be attached indirectly by creating a new differencing child hard disk for that.
See the interface description for more information.

Note that all Immutable hard disks are always read-only while all Writethrough hard
disks are always not.

Note: The read-only condition represented by this attribute is related to the
hard disk type and usage, not to the current media state and not to the read-
only state of the storage unit.

93

9 Classes (interfaces)

9.16.1.7 logicalSize (read-only)

unsigned long long IHardDisk::logicalSize

Logical size of this hard disk (in megabytes), as reported to the guest OS running
inside the virtual machine this disk is attached to. The logical size is defined when the
hard disk is created and cannot be changed later.

Note: Reading this property on a differencing hard disk will return the size of
its root hard disk.

Note: For hard disks whose state is state is ::, the value of this property is the
last known logical size. For :: hard disks, the returned value is zero.

9.16.1.8 autoReset (read/write)

boolean IHardDisk::autoReset

Whether this differencing hard disk will be automatically reset each time a virtual
machine it is attached to is powered up.

See reset() for more information about resetting differencing hard disks.

Note: Reading this property on a base (non-differencing) hard disk will al-
ways false. Changing the value of this property in this case is not supported.

9.16.2 cloneTo
IProgress IHardDisk::cloneTo(

[in] IHardDisk target,
[in] HardDiskVariant variant,
[in] IHardDisk parent)

Starts creating a clone of this hard disk in the format and at the location defined by
the target argument.

The target hard disk must be in :: state (i.e. must not have an existing storage
unit). Upon successful completion, the cloned hard disk will contain exactly the same
sector data as the hard disk being cloned, except that a new UUID for the clone will
be randomly generated.

The parent argument defines which hard disk will be the parent of the clone. Pass-
ing a NULL reference indicates that the clone will be a base image, i.e. completely

94

9 Classes (interfaces)

independent. It is possible to specify an arbitrary hard disk for this parameter, includ-
ing the parent of the hard disk which is being cloned. Even cloning to a child of the
source hard disk is possible.

After the returned progress object reports that the operation is successfully com-
plete, the target hard disk gets remembered by this VirtualBox installation and may be
attached to virtual machines.

Note: This hard disk will be placed to :: state for the duration of this opera-
tion.

9.16.3 compact
IProgress IHardDisk::compact()

Starts compacting of this hard disk. This means that the disk is transformed into
a possibly more compact storage representation. This potentially creates temporary
images, which can require a substantial amount of additional disk space.

This hard disk will be placed to :: state and all its parent hard disks (if any) will be
placed to :: state for the duration of this operation.

9.16.4 createBaseStorage
IProgress IHardDisk::createBaseStorage(

[in] unsigned long long logicalSize,
[in] HardDiskVariant variant)

Starts creating a hard disk storage unit (fixed/dynamic, according to the variant
flags) in in the background. The previous storage unit created for this object, if any,
must first be deleted using deleteStorage(), otherwise the operation will fail.

Before the operation starts, the hard disk is placed in :: state. If the create operation
fails, the media will be placed back in :: state.

After the returned progress object reports that the operation has successfully com-
pleted, the media state will be set to ::, the hard disk will be remembered by this
VirtualBox installation and may be attached to virtual machines.

If this method fails, the following error codes may be reported:

• VBOX_E_NOT_SUPPORTED: The variant of storage creation operation is not
supported. See IHardDiskFormat::capabilities.

9.16.5 createDiffStorage
IProgress IHardDisk::createDiffStorage(

[in] IHardDisk target,
[in] HardDiskVariant variant)

95

9 Classes (interfaces)

Starts creating an empty differencing storage unit based on this hard disk in the
format and at the location defined by the target argument.

The target hard disk must be in :: state (i.e. must not have an existing storage unit).
Upon successful completion, this operation will set the type of the target hard disk to
:: and create a storage unit necessary to represent the differencing hard disk data in
the given format (according to the storage format of the target object).

After the returned progress object reports that the operation is successfully com-
plete, the target hard disk gets remembered by this VirtualBox installation and may be
attached to virtual machines.

Note: The hard disk will be set to :: state for the duration of this operation.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_IN_USE: Hard disk not in NotCreated state.

9.16.6 deleteStorage
IProgress IHardDisk::deleteStorage()

Starts deleting the storage unit of this hard disk.
The hard disk must not be attached to any known virtual machine and must not

have any known child hard disks, otherwise the operation will fail. It will also fail if
there is no storage unit to delete or if deletion is already in progress, or if the hard
disk is being in use (locked for read or for write) or inaccessible. Therefore, the only
valid state for this operation to succeed is ::.

Before the operation starts, the hard disk is placed to :: state and gets removed from
the list of remembered hard disks (media registry). If the delete operation fails, the
media will be remembered again and placed back to :: state.

After the returned progress object reports that the operation is complete, the media
state will be set to :: and you will be able to use one of the storage creation methods
to create it again.

See also: #close()

Note: If the deletion operation fails, it is not guaranteed that the storage unit
still exists. You may check the IMedium::state value to answer this question.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_IN_USE: Hard disk is attached to a virtual machine.

• VBOX_E_NOT_SUPPORTED: Storage deletion is not allowed because neither of
storage creation operations are supported. See IHardDiskFormat::capabilities.

96

9 Classes (interfaces)

9.16.7 getProperties
wstring IHardDisk::getProperties(

[in] wstring names,
[out] wstring returnNames[])

Returns values for a group of properties in one call.
The names of the properties to get are specified using the names argument which

is a list of comma-separated property names or null if all properties are to be re-
turned. Note that currently the value of this argument is ignored and the method
always returns all existing properties.

The list of all properties supported by the given hard disk format can be obtained
with IHardDiskFormat::describeProperties().

The method returns two arrays, the array of property names corresponding to the
names argument and the current values of these properties. Both arrays have the
same number of elements with each elemend at the given index in the first array
corresponds to an element at the same index in the second array.

Note that for properties that do not have assigned values, null is returned at the
appropriate index in the returnValues array.

9.16.8 getProperty
wstring IHardDisk::getProperty(

[in] wstring name)

Returns the value of the custom hard disk property with the given name.
The list of all properties supported by the given hard disk format can be obtained

with IHardDiskFormat::describeProperties().
Note that if this method returns a nullvalue, the requested property is supported

but currently not assigned any value.
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Requested property does not exist (not sup-
ported by the format).

• E_INVALIDARG: name is NULL or empty.

9.16.9 mergeTo
IProgress IHardDisk::mergeTo(

[in] uuid targetId)

Starts merging the contents of this hard disk and all intermediate differencing hard
disks in the chain to the given target hard disk.

The target hard disk must be either a descendant of this hard disk or its ancestor
(otherwise this method will immediately return a failure). It follows that there are two
logical directions of the merge operation: from ancestor to descendant (forward merge)

97

9 Classes (interfaces)

and from descendant to ancestor (backward merge). Let us consider the following hard
disk chain:

Base <- Diff_1 <- Diff_2

Here, calling this method on the Base hard disk object with Diff_2 as an argument
will be a forward merge; calling it on Diff_2 with Base as an argument will be a
backward merge. Note that in both cases the contents of the resulting hard disk will
be the same, the only difference is the hard disk object that takes the result of the
merge operation. In case of the forward merge in the above example, the result will
be written to Diff_2; in case of the backward merge, the result will be written to
Base. In other words, the result of the operation is always stored in the target hard
disk.

Upon successful operation completion, the storage units of all hard disks in the
chain between this (source) hard disk and the target hard disk, including the source
hard disk itself, will be automatically deleted and the relevant hard disk objects (in-
cluding this hard disk) will become uninitialized. This means that any attempt to
call any of their methods or attributes will fail with the "Object not ready"
(E_ACCESSDENIED) error. Applied to the above example, the forward merge of
Base to Diff_2 will delete and uninitialize both Base and Diff_1 hard disks. Note
that Diff_2 in this case will become a base hard disk itself since it will no longer be
based on any other hard disk.

Considering the above, all of the following conditions must be met in order for the
merge operation to succeed:

• Neither this (source) hard disk nor any intermediate differencing hard disk in
the chain between it and the target hard disk is attached to any virtual machine.

• Neither the source hard disk nor the target hard disk is an :: hard disk.

• The part of the hard disk tree from the source hard disk to the target hard disk
is a linear chain, i.e. all hard disks in this chain have exactly one child which is
the next hard disk in this chain. The only exception from this rule is the target
hard disk in the forward merge operation; it is allowed to have any number of
child hard disks because the merge operation will hot change its logical contents
(as it is seen by the guest OS or by children).

• None of the involved hard disks are in :: or :: state.

Note: This (source) hard disk and all intermediates will be placed to :: state
and the target hard disk will be placed to :: state and for the duration of this
operation.

98

9 Classes (interfaces)

9.16.10 reset
IProgress IHardDisk::reset()

Starts erasing the contents of this differencing hard disk.
This operation will reset the differencing hard disk to its initial state when it does

not contain any sector data and any read operation is redirected to its parent hard
disk.

This hard disk will be placed to :: for the duration of this operation.
If this method fails, the following error codes may be reported:

• VBOX_E_NOT_SUPPORTED: This is not a differencing hard disk.

• VBOX_E_INVALID_OBJECT_STATE: Hard disk is not in :: or :: state.

9.16.11 setProperties
void IHardDisk::setProperties(

[in] wstring names[],
[in] wstring values[])

Sets values for a group of properties in one call.
The names of the properties to set are passed in the names array along with the new

values for them in the values array. Both arrays have the same number of elements
with each elemend at the given index in the first array corresponding to an element at
the same index in the second array.

If there is at least one property name in names that is not valid, the method will fail
before changing the values of any other properties from the names array.

Using this method over setProperty() is preferred if you need to set several proper-
ties at once since it will result into less IPC calls.

The list of all properties supported by the given hard disk format can be obtained
with IHardDiskFormat::describeProperties().

Note that setting the property value to null is equivalent to deleting the existing
value. A default value (if it is defined for this property) will be used by the format
backend in this case.

9.16.12 setProperty
void IHardDisk::setProperty(

[in] wstring name,
[in] wstring value)

Sets the value of the custom hard disk property with the given name.
The list of all properties supported by the given hard disk format can be obtained

with IHardDiskFormat::describeProperties().

99

9 Classes (interfaces)

Note that setting the property value to null is equivalent to deleting the existing
value. A default value (if it is defined for this property) will be used by the format
backend in this case.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Requested property does not exist (not sup-
ported by the format).

• E_INVALIDARG: name is NULL or empty.

9.17 IHardDiskAttachment

Note: With the web service, this interface is mapped to a structure. Attributes
that return this interface will not return an object, but a complete structure
containing the attributes listed below as structure members.

The IHardDiskAttachment interface represents a hard disk attachment of a virtual
machine.

Every hard disk attachment specifies a slot of the virtual hard disk controller and a
virtual hard disk attached to this slot.

The array of hard disk attachments is returned by IMachine::hardDiskAttachments[].

9.17.1 Attributes

9.17.1.1 hardDisk (read-only)

IHardDisk IHardDiskAttachment::hardDisk

Hard disk object associated with this attachment.

9.17.1.2 controller (read-only)

wstring IHardDiskAttachment::controller

Interface bus of this attachment.

9.17.1.3 port (read-only)

long IHardDiskAttachment::port

Port number of this attachment.

9.17.1.4 device (read-only)

long IHardDiskAttachment::device

Device slot number of this attachment.

100

9 Classes (interfaces)

9.18 IHardDiskFormat

The IHardDiskFormat interface represents a virtual hard disk format.
Each hard disk format has an associated backend which is used to handle hard disks

stored in this format. This interface provides information about the properties of the
associated backend.

Each hard disk format is identified by a string represented by the id attribute. This
string is used in calls like IVirtualBox::createHardDisk() to specify the desired format.

The list of all supported hard disk formats can be obtained using ISystemProper-
ties::hardDiskFormats[].

See also: IHardDisk

9.18.1 Attributes

9.18.1.1 id (read-only)

wstring IHardDiskFormat::id

Identifier of this format.
The format identifier is a non-null non-empty ASCII string. Note that this string is

case-insensitive. This means that, for example, all of the following strings:

"VDI"
"vdi"
"VdI"

refer to the same hard disk format.
This string is used in methods of other interfaces where it is necessary to specify a

hard disk format, such as IVirtualBox::createHardDisk().

9.18.1.2 name (read-only)

wstring IHardDiskFormat::name

Human readable description of this format.
Mainly for use in file open dialogs.

9.18.1.3 fileExtensions (read-only)

wstring IHardDiskFormat::fileExtensions[]

Array of strings containing the supported file extensions.
The first extension in the array is the extension preferred by the backend. It is

recommended to use this extension when specifying a location of the storage unit for
a new hard disk.

Note that some backends do not work on files, so this array may be empty.
See also: IHardDiskFormat::capabilities

101

9 Classes (interfaces)

9.18.1.4 capabilities (read-only)

unsigned long IHardDiskFormat::capabilities

Capabilities of the format as a set of bit flags.
For the meaning of individual capability flags see HardDiskFormatCapabilities.

9.18.2 describeProperties
void IHardDiskFormat::describeProperties(

[out] wstring names[],
[out] wstring description[],
[out] DataType types[],
[out] unsigned long flags[],
[out] wstring defaults[])

Returns several arrays describing the properties supported by this format.
An element with the given index in each array describes one property. Thus, the

number of elements in each returned array is the same and corresponds to the number
of supported properties.

The returned arrays are filled in only if the :: flag is set. All arguments must be
non-NULL.

See also: DataTypeSee also: DataFlags

9.19 IHost

The IHost interface represents the physical machine that this VirtualBox installation
runs on.

An object implementing this interface is returned by the IVirtualBox::host attribute.
This interface contains read-only information about the host’s physical hardware (such
as what processors and disks are available, what the host operating system is, and so
on) and also allows for manipulating some of the host’s hardware, such as global USB
device filters and host interface networking.

9.19.1 Attributes

9.19.1.1 DVDDrives (read-only)

IHostDVDDrive IHost::DVDDrives[]

List of DVD drives available on the host.

9.19.1.2 floppyDrives (read-only)

IHostFloppyDrive IHost::floppyDrives[]

List of floppy drives available on the host.

102

9 Classes (interfaces)

9.19.1.3 USBDevices (read-only)

IHostUSBDevice IHost::USBDevices[]

List of USB devices currently attached to the host. Once a new device is physically
attached to the host computer, it appears in this list and remains there until detached.

Note: If USB functionality is not available in the given edition of VirtualBox,
this method will set the result code to E_NOTIMPL.

9.19.1.4 USBDeviceFilters (read-only)

IHostUSBDeviceFilter IHost::USBDeviceFilters[]

List of USB device filters in action. When a new device is physically attached to the
host computer, filters from this list are applied to it (in order they are stored in the
list). The first matched filter will determine the action performed on the device.

Unless the device is ignored by these filters, filters of all currently running virtual
machines (IUSBController::deviceFilters[]) are applied to it.

Note: If USB functionality is not available in the given edition of VirtualBox,
this method will set the result code to E_NOTIMPL.

See also: IHostUSBDeviceFilter, USBDeviceState

9.19.1.5 networkInterfaces (read-only)

IHostNetworkInterface IHost::networkInterfaces[]

List of host network interfaces currently defined on the host.

9.19.1.6 processorCount (read-only)

unsigned long IHost::processorCount

Number of (logical) CPUs installed in the host system.

9.19.1.7 processorOnlineCount (read-only)

unsigned long IHost::processorOnlineCount

Number of (logical) CPUs online in the host system.

103

9 Classes (interfaces)

9.19.1.8 memorySize (read-only)

unsigned long IHost::memorySize

Amount of system memory in megabytes installed in the host system.

9.19.1.9 memoryAvailable (read-only)

unsigned long IHost::memoryAvailable

Available system memory in the host system.

9.19.1.10 operatingSystem (read-only)

wstring IHost::operatingSystem

Name of the host system’s operating system.

9.19.1.11 OSVersion (read-only)

wstring IHost::OSVersion

Host operating system’s version string.

9.19.1.12 UTCTime (read-only)

long long IHost::UTCTime

Returns the current host time in milliseconds since 1970-01-01 UTC.

9.19.2 createUSBDeviceFilter
IHostUSBDeviceFilter IHost::createUSBDeviceFilter(

[in] wstring name)

Creates a new USB device filter. All attributes except the filter name are set to null
(any match), active is false (the filter is not active).

The created filter can be added to the list of filters using insertUSBDeviceFilter().
See also: #USBDeviceFilters

9.19.3 findHostDVDDrive
IHostDVDDrive IHost::findHostDVDDrive(

[in] wstring name)

Searches for a host DVD drive with the given name.
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any host
drive.

104

9 Classes (interfaces)

9.19.4 findHostFloppyDrive
IHostFloppyDrive IHost::findHostFloppyDrive(

[in] wstring name)

Searches for a host floppy drive with the given name.
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any host
floppy drive.

9.19.5 findHostNetworkInterfaceById
IHostNetworkInterface IHost::findHostNetworkInterfaceById(

[in] uuid id)

Searches through all host network interfaces for an interface with the given GUID.

Note: The method returns an error if the given GUID does not correspond to
any host network interface.

9.19.6 findHostNetworkInterfaceByName
IHostNetworkInterface IHost::findHostNetworkInterfaceByName(

[in] wstring name)

Searches through all host network interfaces for an interface with the given name.

Note: The method returns an error if the given name does not correspond to
any host network interface.

9.19.7 findHostNetworkInterfacesOfType
IHostNetworkInterface IHost::findHostNetworkInterfacesOfType(

[in] HostNetworkInterfaceType type)

Searches through all host network interfaces and returns a list of interfaces of the
specified type

105

9 Classes (interfaces)

9.19.8 findUSBDeviceByAddress
IHostUSBDevice IHost::findUSBDeviceByAddress(

[in] wstring name)

Searches for a USB device with the given host address.
See also: IHostUSBDevice::address
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any USB
device.

9.19.9 findUSBDeviceById
IHostUSBDevice IHost::findUSBDeviceById(

[in] uuid id)

Searches for a USB device with the given UUID.
See also: IHostUSBDevice::id
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Given id does not correspond to any USB
device.

9.19.10 getProcessorDescription
wstring IHost::getProcessorDescription(

[in] unsigned long cpuId)

Query the model string of a specified host CPU.

Note: This function is not implemented in the current version of the product.

9.19.11 getProcessorFeature
boolean IHost::getProcessorFeature(

[in] ProcessorFeature feature)

Query whether a CPU feature is supported or not.

9.19.12 getProcessorSpeed
unsigned long IHost::getProcessorSpeed(

[in] unsigned long cpuId)

Query the (approximate) maximum speed of a specified host CPU in Megahertz.

106

9 Classes (interfaces)

9.19.13 insertUSBDeviceFilter
void IHost::insertUSBDeviceFilter(

[in] unsigned long position,
[in] IHostUSBDeviceFilter filter)

Inserts the given USB device to the specified position in the list of filters.
Positions are numbered starting from 0. If the specified position is equal to or greater

than the number of elements in the list, the filter is added at the end of the collection.

Note: Duplicates are not allowed, so an attempt to insert a filter already in
the list is an error.

Note: If USB functionality is not available in the given edition of VirtualBox,
this method will set the result code to E_NOTIMPL.

See also: #USBDeviceFilters
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: USB device filter is not created within
this VirtualBox instance.

• E_INVALIDARG: USB device filter already in list.

9.19.14 removeUSBDeviceFilter
IHostUSBDeviceFilter IHost::removeUSBDeviceFilter(

[in] unsigned long position)

Removes a USB device filter from the specified position in the list of filters.
Positions are numbered starting from 0. Specifying a position equal to or greater

than the number of elements in the list will produce an error.

Note: If USB functionality is not available in the given edition of VirtualBox,
this method will set the result code to E_NOTIMPL.

See also: #USBDeviceFilters
If this method fails, the following error codes may be reported:

• E_INVALIDARG: USB device filter list empty or invalid position.

9.20 IHostDVDDrive

The IHostDVDDrive interface represents the physical CD/DVD drive hardware on the
host. Used indirectly in IHost::DVDDrives[].

107

9 Classes (interfaces)

9.20.1 Attributes

9.20.1.1 name (read-only)

wstring IHostDVDDrive::name

Returns the platform-specific device identifier. On DOS-like platforms, it is a drive
name (e.g. R:). On Unix-like platforms, it is a device name (e.g. /dev/hdc).

9.20.1.2 description (read-only)

wstring IHostDVDDrive::description

Returns a human readable description for the drive. This description usually con-
tains the product and vendor name. A null string is returned if the description is not
available.

9.20.1.3 udi (read-only)

wstring IHostDVDDrive::udi

Returns the unique device identifier for the drive. This attribute is reserved for
future use instead of name. Currently it is not used and may return null on some
platforms.

9.21 IHostFloppyDrive

The IHostFloppyDrive interface represents the physical floppy drive hardware on the
host. Used indirectly in IHost::floppyDrives[].

9.21.1 Attributes

9.21.1.1 name (read-only)

wstring IHostFloppyDrive::name

Returns the platform-specific device identifier. On DOS-like platforms, it is a drive
name (e.g. A:). On Unix-like platforms, it is a device name (e.g. /dev/fd0).

9.21.1.2 description (read-only)

wstring IHostFloppyDrive::description

Returns a human readable description for the drive. This description usually con-
tains the product and vendor name. A null string is returned if the description is not
available.

108

9 Classes (interfaces)

9.21.1.3 udi (read-only)

wstring IHostFloppyDrive::udi

Returns the unique device identifier for the drive. This attribute is reserved for
future use instead of name. Currently it is not used and may return null on some
platforms.

9.22 IHostNetworkInterface

Reprents one of host’s network interfaces. IP V6 address and network mask are strings
of 32 hexdecimal digits grouped by four. Groups are separated by colons. For example,
fe80:0000:0000:0000:021e:c2ff:fed2:b030.

9.22.1 Attributes

9.22.1.1 name (read-only)

wstring IHostNetworkInterface::name

Returns the host network interface name.

9.22.1.2 id (read-only)

uuid IHostNetworkInterface::id

Returns the interface UUID.

9.22.1.3 networkName (read-only)

wstring IHostNetworkInterface::networkName

Returns the name of a virtual network the interface gets attached to.

9.22.1.4 dhcpEnabled (read-only)

boolean IHostNetworkInterface::dhcpEnabled

Specifies whether the DHCP is enabled for the interface.

9.22.1.5 IPAddress (read-only)

wstring IHostNetworkInterface::IPAddress

Returns the IP V4 address of the interface.

109

9 Classes (interfaces)

9.22.1.6 networkMask (read-only)

wstring IHostNetworkInterface::networkMask

Returns the network mask of the interface.

9.22.1.7 IPV6Supported (read-only)

boolean IHostNetworkInterface::IPV6Supported

Specifies whether the IP V6 is supported/enabled for the interface.

9.22.1.8 IPV6Address (read-only)

wstring IHostNetworkInterface::IPV6Address

Returns the IP V6 address of the interface.

9.22.1.9 IPV6NetworkMaskPrefixLength (read-only)

unsigned long IHostNetworkInterface::IPV6NetworkMaskPrefixLength

Returns the length IP V6 network mask prefix of the interface.

9.22.1.10 hardwareAddress (read-only)

wstring IHostNetworkInterface::hardwareAddress

Returns the hardware address. For Ethernet it is MAC address.

9.22.1.11 mediumType (read-only)

HostNetworkInterfaceMediumType IHostNetworkInterface::mediumType

Type of protocol encapsulation used.

9.22.1.12 status (read-only)

HostNetworkInterfaceStatus IHostNetworkInterface::status

Status of the interface.

9.22.1.13 interfaceType (read-only)

HostNetworkInterfaceType IHostNetworkInterface::interfaceType

specifies the host interface type.

110

9 Classes (interfaces)

9.22.2 dhcpRediscover
void IHostNetworkInterface::dhcpRediscover()

refreshes the IP configuration for dhcp-enabled interface.

9.22.3 enableDynamicIpConfig
void IHostNetworkInterface::enableDynamicIpConfig()

enables the dynamic IP configuration.

9.22.4 enableStaticIpConfig
void IHostNetworkInterface::enableStaticIpConfig(

[in] wstring IPAddress,
[in] wstring networkMask)

sets and enables the static IP V4 configuration for the given interface.

9.22.5 enableStaticIpConfigV6
void IHostNetworkInterface::enableStaticIpConfigV6(

[in] wstring IPV6Address,
[in] unsigned long IPV6NetworkMaskPrefixLength)

sets and enables the static IP V6 configuration for the given interface.

9.23 IHostUSBDevice

The IHostUSBDevice interface represents a physical USB device attached to the host
computer.

Besides properties inherited from IUSBDevice, this interface adds the state property
that holds the current state of the USB device.

See also: IHost::USBDevices, IHost::USBDeviceFilters

9.23.1 Attributes

9.23.1.1 state (read-only)

USBDeviceState IHostUSBDevice::state

Current state of the device.

111

9 Classes (interfaces)

9.24 IHostUSBDeviceFilter

The IHostUSBDeviceFilter interface represents a global filter for a physical USB device
used by the host computer. Used indirectly in IHost::USBDeviceFilters[].

Using filters of this type, the host computer determines the initial state of the USB
device after it is physically attached to the host’s USB controller.

Note: The remote attribute is ignored by this type of filters, because it makes
sense only for machine USB filters.

See also: IHost::USBDeviceFilters

9.24.1 Attributes

9.24.1.1 action (read/write)

USBDeviceFilterAction IHostUSBDeviceFilter::action

Action performed by the host when an attached USB device matches this filter.

9.25 IInternalMachineControl

Note: This interface is not supported in the web service.

9.25.1 adoptSavedState
void IInternalMachineControl::adoptSavedState(

[in] wstring savedStateFile)

Gets called by IConsole::adoptSavedState.
If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Invalid saved state file path.

9.25.2 autoCaptureUSBDevices
void IInternalMachineControl::autoCaptureUSBDevices()

Requests a capture all matching USB devices attached to the host. When the request
is completed, the VM process will get a IInternalSessionControl::onUSBDeviceAttach()
notification per every captured device.

112

9 Classes (interfaces)

9.25.3 beginSavingState
void IInternalMachineControl::beginSavingState(

[in] IProgress progress,
[out] wstring stateFilePath)

Called by the VM process to inform the server it wants to save the current state and
stop the VM execution.

9.25.4 beginTakingSnapshot
void IInternalMachineControl::beginTakingSnapshot(

[in] IConsole initiator,
[in] wstring name,
[in] wstring description,
[in] IProgress progress,
[out] wstring stateFilePath,
[out] IProgress serverProgress)

Called by the VM process to inform the server it wants to take a snapshot.
If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

9.25.5 captureUSBDevice
void IInternalMachineControl::captureUSBDevice(

[in] uuid id)

Requests a capture of the given host USB device. When the request is completed,
the VM process will get a IInternalSessionControl::onUSBDeviceAttach() notification.

9.25.6 detachAllUSBDevices
void IInternalMachineControl::detachAllUSBDevices(

[in] boolean done)

Notification that a VM that is being powered down. The done parameter indicates
whether which stage of the power down we’re at. When done = false the VM is
announcing its intentions, while when done = true the VM is reporting what it has
done.

Note: In the done = true case, the server must run its own filters and filters
of all VMs but this one on all detach devices as if they were just attached to
the host computer.

113

9 Classes (interfaces)

9.25.7 detachUSBDevice
void IInternalMachineControl::detachUSBDevice(

[in] uuid id,
[in] boolean done)

Notification that a VM is going to detach (done = false) or has already detached
(done = true) the given USB device. When the done = true request is completed, the
VM process will get a IInternalSessionControl::onUSBDeviceDetach() notification.

Note: In the done = true case, the server must run its own filters and filters
of all VMs but this one on the detached device as if it were just attached to
the host computer.

9.25.8 discardCurrentSnapshotAndState
IProgress IInternalMachineControl::discardCurrentSnapshotAndState(

[in] IConsole initiator,
[out] MachineState machineState)

Gets called by IConsole::discardCurrentSnapshotAndState.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: Virtual machine does not have any
snapshot.

9.25.9 discardCurrentState
IProgress IInternalMachineControl::discardCurrentState(

[in] IConsole initiator,
[out] MachineState machineState)

Gets called by IConsole::discardCurrentState.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: Virtual machine does not have any
snapshot.

9.25.10 discardSnapshot
IProgress IInternalMachineControl::discardSnapshot(

[in] IConsole initiator,
[in] uuid id,
[out] MachineState machineState)

114

9 Classes (interfaces)

Gets called by IConsole::discardSnapshot.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: Snapshot has more than one child snap-
shot.

9.25.11 endSavingState
void IInternalMachineControl::endSavingState(

[in] boolean success)

Called by the VM process to inform the server that saving the state previously re-
quested by #beginSavingState is either successfully finished or there was a failure.

If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

9.25.12 endTakingSnapshot
void IInternalMachineControl::endTakingSnapshot(

[in] boolean success)

Called by the VM process to inform the server that the snapshot previously requested
by #beginTakingSnapshot is either successfully taken or there was a failure.

9.25.13 getIPCId
wstring IInternalMachineControl::getIPCId()

9.25.14 lockMedia
void IInternalMachineControl::lockMedia()

Locks all media attached to the machine for writing and parents of attahced different
hard disks (if any) for reading. This operation is atomic so that if it fails no media is
actually locked.

This method is intended to be called when the machine is in Starting or Restoring
state. The locked media will be automatically unlocked when the machine is powered
off or crashed.

9.25.15 onSessionEnd
IProgress IInternalMachineControl::onSessionEnd(

[in] ISession session)

Triggered by the given session object when the session is about to close normally.

115

9 Classes (interfaces)

9.25.16 pullGuestProperties
void IInternalMachineControl::pullGuestProperties(

[out] wstring name[],
[out] wstring value[],
[out] unsigned long long timestamp[],
[out] wstring flags[])

Get the list of the guest properties matching a set of patterns along with their values,
time stamps and flags and give responsibility for managing properties to the console.

9.25.17 pushGuestProperties
void IInternalMachineControl::pushGuestProperties(

[in] wstring name[],
[in] wstring value[],
[in] unsigned long long timestamp[],
[in] wstring flags[])

Set the list of the guest properties matching a set of patterns along with their values,
time stamps and flags and return responsibility for managing properties to IMachine.

9.25.18 pushGuestProperty
void IInternalMachineControl::pushGuestProperty(

[in] wstring name,
[in] wstring value,
[in] unsigned long long timestamp,
[in] wstring flags)

Update a single guest property in IMachine.

9.25.19 runUSBDeviceFilters
void IInternalMachineControl::runUSBDeviceFilters(

[in] IUSBDevice device,
[out] boolean matched,
[out] unsigned long maskedInterfaces)

Asks the server to run USB devices filters of the associated machine against the given
USB device and tell if there is a match.

Note: Intended to be used only for remote USB devices. Local ones don’t
require to call this method (this is done implicitly by the Host and USBProxy-
Service).

116

9 Classes (interfaces)

9.25.20 updateState
void IInternalMachineControl::updateState(

[in] MachineState state)

Updates the VM state.

Note: This operation will also update the settings file with the correct infor-
mation about the saved state file and delete this file from disk when appropri-
ate.

9.26 IInternalSessionControl

Note: This interface is not supported in the web service.

9.26.1 accessGuestProperty
void IInternalSessionControl::accessGuestProperty(

[in] wstring name,
[in] wstring value,
[in] wstring flags,
[in] boolean isSetter,
[out] wstring retValue,
[out] unsigned long long retTimestamp,
[out] wstring retFlags)

Called by IMachine::getGuestProperty() and by IMachine::setGuestProperty() in or-
der to read and modify guest properties.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Machine session is not open.

• VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

9.26.2 assignMachine
void IInternalSessionControl::assignMachine(

[in] IMachine machine)

Assigns the machine object associated with this direct-type session or informs the
session that it will be a remote one (if machine == NULL).

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

117

9 Classes (interfaces)

9.26.3 assignRemoteMachine
void IInternalSessionControl::assignRemoteMachine(

[in] IMachine machine,
[in] IConsole console)

Assigns the machine and the (remote) console object associated with this remote-
type session.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

9.26.4 enumerateGuestProperties
void IInternalSessionControl::enumerateGuestProperties(

[in] wstring patterns,
[out] wstring key[],
[out] wstring value[],
[out] unsigned long long timestamp[],
[out] wstring flags[])

Return a list of the guest properties matching a set of patterns along with their
values, time stamps and flags.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Machine session is not open.

• VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

9.26.5 getPID
unsigned long IInternalSessionControl::getPID()

PID of the process that has created this Session object.

9.26.6 getRemoteConsole
IConsole IInternalSessionControl::getRemoteConsole()

Returns the console object suitable for remote control.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

118

9 Classes (interfaces)

9.26.7 onDVDDriveChange
void IInternalSessionControl::onDVDDriveChange()

Triggered when settings of the DVD drive object of the associated virtual machine
have changed.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.26.8 onFloppyDriveChange
void IInternalSessionControl::onFloppyDriveChange()

Triggered when settings of the floppy drive object of the associated virtual machine
have changed.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.26.9 onNetworkAdapterChange
void IInternalSessionControl::onNetworkAdapterChange(

[in] INetworkAdapter networkAdapter)

Triggered when settings of a network adapter of the associated virtual machine have
changed.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.26.10 onParallelPortChange
void IInternalSessionControl::onParallelPortChange(

[in] IParallelPort parallelPort)

Triggered when settings of a parallel port of the associated virtual machine have
changed.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

119

9 Classes (interfaces)

9.26.11 onSerialPortChange
void IInternalSessionControl::onSerialPortChange(

[in] ISerialPort serialPort)

Triggered when settings of a serial port of the associated virtual machine have
changed.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.26.12 onSharedFolderChange
void IInternalSessionControl::onSharedFolderChange(

[in] boolean global)

Triggered when a permanent (global or machine) shared folder has been created or
removed.

Note: We don’t pass shared folder parameters in this notification because the
order in which parallel notifications are delivered is not defined, therefore it
could happen that these parameters were outdated by the time of processing
this notification.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.26.13 onShowWindow
void IInternalSessionControl::onShowWindow(

[in] boolean check,
[out] boolean canShow,
[out] unsigned long long winId)

Called by IMachine::canShowConsoleWindow() and by IMachine::showConsoleWindow()
in order to notify console callbacks IConsoleCallback::onCanShowWindow() and
IConsoleCallback::onShowWindow().

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

120

9 Classes (interfaces)

9.26.14 onStorageControllerChange
void IInternalSessionControl::onStorageControllerChange()

Triggered when settings of a storage controller of the associated virtual machine
have changed.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.26.15 onUSBControllerChange
void IInternalSessionControl::onUSBControllerChange()

Triggered when settings of the USB controller object of the associated virtual ma-
chine have changed.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.26.16 onUSBDeviceAttach
void IInternalSessionControl::onUSBDeviceAttach(

[in] IUSBDevice device,
[in] IVirtualBoxErrorInfo error,
[in] unsigned long maskedInterfaces)

Triggered when a request to capture a USB device (as a result of matched USB filters
or direct call to IConsole::attachUSBDevice()) has completed. A nullerror object
means success, otherwise it describes a failure.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.26.17 onUSBDeviceDetach
void IInternalSessionControl::onUSBDeviceDetach(

[in] uuid id,
[in] IVirtualBoxErrorInfo error)

Triggered when a request to release the USB device (as a result of machine termi-
nation or direct call to IConsole::detachUSBDevice()) has completed. A nullerror
object means success, otherwise it

If this method fails, the following error codes may be reported:

121

9 Classes (interfaces)

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.26.18 onVRDPServerChange
void IInternalSessionControl::onVRDPServerChange()

Triggered when settings of the VRDP server object of the associated virtual machine
have changed.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.26.19 uninitialize
void IInternalSessionControl::uninitialize()

Uninitializes (closes) this session. Used by VirtualBox to close the corresponding
remote session when the direct session dies or gets closed.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

9.26.20 updateMachineState
void IInternalSessionControl::updateMachineState(

[in] MachineState aMachineState)

Updates the machine state in the VM process. Must be called only in certain cases
(see the method implementation).

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Session state prevents operation.

• VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.27 IKeyboard

The IKeyboard interface represents the virtual machine’s keyboard. Used in ICon-
sole::keyboard.

Use this interface to send keystrokes or the Ctrl-Alt-Del sequence to the virtual ma-
chine.

122

9 Classes (interfaces)

9.27.1 putCAD
void IKeyboard::putCAD()

Sends the Ctrl-Alt-Del sequence to the keyboard. This function is nothing special, it
is just a convenience function calling putScancodes() with the proper scancodes.

If this method fails, the following error codes may be reported:

• VBOX_E_IPRT_ERROR: Could not send all scan codes to virtual keyboard.

9.27.2 putScancode
void IKeyboard::putScancode(

[in] long scancode)

Sends a scancode to the keyboard.
If this method fails, the following error codes may be reported:

• VBOX_E_IPRT_ERROR: Could not send scan code to virtual keyboard.

9.27.3 putScancodes
unsigned long IKeyboard::putScancodes(

[in] long scancodes[])

Sends an array of scancodes to the keyboard.
If this method fails, the following error codes may be reported:

• VBOX_E_IPRT_ERROR: Could not send all scan codes to virtual keyboard.

9.28 IMachine

The IMachine interface represents a virtual machine, or guest, created in VirtualBox.
This interface is used in two contexts. First of all, a collection of objects implement-

ing this interface is stored in the IVirtualBox::machines[] attribute which lists all the
virtual machines that are currently registered with this VirtualBox installation. Also,
once a session has been opened for the given virtual machine (e.g. the virtual machine
is running), the machine object associated with the open session can be queried from
the session object; see ISession for details.

The main role of this interface is to expose the settings of the virtual machine and
provide methods to change various aspects of the virtual machine’s configuration. For
machine objects stored in the IVirtualBox::machines[] collection, all attributes are
read-only unless explicitly stated otherwise in individual attribute and method de-
scriptions. In order to change a machine setting, a session for this machine must be
opened using one of IVirtualBox::openSession(), IVirtualBox::openRemoteSession()

123

9 Classes (interfaces)

or IVirtualBox::openExistingSession() methods. After the session has been success-
fully opened, a mutable machine object needs to be queried from the session object
and then the desired settings changes can be applied to the returned object using
IMachine attributes and methods. See the ISession interface description for more in-
formation about sessions.

Note that the IMachine interface does not provide methods to control virtual ma-
chine execution (such as start the machine, or power it down) – these methods are
grouped in a separate IConsole interface. Refer to the IConsole interface description
to get more information about this topic.

See also: ISession, IConsole

9.28.1 Attributes

9.28.1.1 parent (read-only)

IVirtualBox IMachine::parent

Associated parent object.

9.28.1.2 accessible (read-only)

boolean IMachine::accessible

Whether this virtual machine is currently accessible or not.
The machine is considered to be inaccessible when:

• It is a registered virtual machine, and

• Its settings file is inaccessible (for example, it is located on a network share that
is not accessible during VirtualBox startup, or becomes inaccessible later, or if
the settings file can be read but is invalid).

Otherwise, the value of this property is always true.
Every time this property is read, the accessibility state of this machine is re-

evaluated. If the returned value is |false|, the accessError property may be used to
get the detailed error information describing the reason of inaccessibility.

When the machine is inaccessible, only the following properties can be used on it:

• parent

• id

• settingsFilePath

• accessible

• accessError

124

9 Classes (interfaces)

An attempt to access any other property or method will return an error.
The only possible action you can perform on an inaccessible machine is to unregister

it using the IVirtualBox::unregisterMachine() call (or, to check for the accessibility
state once more by querying this property).

Note: In the current implementation, once this property returns true, the
machine will never become inaccessible later, even if its settings file cannot
be successfully read/written any more (at least, until the VirtualBox server is
restarted). This limitation may be removed in future releases.

9.28.1.3 accessError (read-only)

IVirtualBoxErrorInfo IMachine::accessError

Note: This attribute is not supported in the web service.

Error information describing the reason of machine inaccessibility.
Reading this property is only valid after the last call to accessible returned false

(i.e. the machine is currently unaccessible). Otherwise, a null IVirtualBoxErrorInfo
object will be returned.

9.28.1.4 name (read/write)

wstring IMachine::name

Name of the virtual machine.
Besides being used for human-readable identification purposes everywhere in

VirtualBox, the virtual machine name is also used as a name of the machine’s set-
tings file and as a name of the subdirectory this settings file resides in. Thus, every
time you change the value of this property, the settings file will be renamed once you
call saveSettings() to confirm the change. The containing subdirectory will be also
renamed, but only if it has exactly the same name as the settings file itself prior to
changing this property (for backward compatibility with previous API releases). The
above implies the following limitations:

• The machine name cannot be empty.

• The machine name can contain only characters that are valid file name charac-
ters according to the rules of the file system used to store VirtualBox configura-
tion.

• You cannot have two or more machines with the same name if they use the same
subdirectory for storing the machine settings files.

125

9 Classes (interfaces)

• You cannot change the name of the machine if it is running, or if any file in the
directory containing the settings file is being used by another running machine or
by any other process in the host operating system at a time when saveSettings()
is called.

If any of the above limitations are hit, saveSettings() will return an appropriate error
message explaining the exact reason and the changes you made to this machine will
not be saved.

Note: For “legacy” machines created using the IVirtual-
Box::createLegacyMachine() call, the above naming limitations do not
apply because the machine name does not affect the settings file name.
The settings file name remains the same as it was specified during machine
creation and never changes.

9.28.1.5 description (read/write)

wstring IMachine::description

Description of the virtual machine.
The description attribute can contain any text and is typically used to describe the

hardware and software configuration of the virtual machine in detail (i.e. network
settings, versions of the installed software and so on).

9.28.1.6 id (read-only)

uuid IMachine::id

UUID of the virtual machine.

9.28.1.7 OSTypeId (read/write)

wstring IMachine::OSTypeId

User-defined identifier of the Guest OS type. You may use IVirtualBox::getGuestOSType()
to obtain an IGuestOSType object representing details about the given Guest OS type.

Note: This value may differ from the value returned by IGuest::OSTypeId if
Guest Additions are installed to the guest OS.

9.28.1.8 HardwareVersion (read/write)

wstring IMachine::HardwareVersion

Hardware version identifier. Internal use only for now.

126

9 Classes (interfaces)

9.28.1.9 CPUCount (read/write)

unsigned long IMachine::CPUCount

Number of virtual CPUs in the VM. In the current version of the product, this is
always 1.

9.28.1.10 memorySize (read/write)

unsigned long IMachine::memorySize

System memory size in megabytes.

9.28.1.11 memoryBalloonSize (read/write)

unsigned long IMachine::memoryBalloonSize

Initial memory balloon size in megabytes.

9.28.1.12 statisticsUpdateInterval (read/write)

unsigned long IMachine::statisticsUpdateInterval

Initial interval to update guest statistics in seconds.

9.28.1.13 VRAMSize (read/write)

unsigned long IMachine::VRAMSize

Video memory size in megabytes.

9.28.1.14 accelerate3DEnabled (read/write)

boolean IMachine::accelerate3DEnabled

This setting determines whether VirtualBox allows guests to make use of the 3D
graphics support available on the host. Currently limited to OpenGL only.

9.28.1.15 monitorCount (read/write)

unsigned long IMachine::monitorCount

Number of virtual monitors.

Note: Only effective on Windows XP and later guests with Guest Additions
installed.

127

9 Classes (interfaces)

9.28.1.16 BIOSSettings (read-only)

IBIOSSettings IMachine::BIOSSettings

Object containing all BIOS settings.

9.28.1.17 HWVirtExEnabled (read/write)

TSBool IMachine::HWVirtExEnabled

This setting determines whether VirtualBox will try to make use of the host CPU’s
hardware virtualization extensions such as Intel VT-x and AMD-V. Note that in case
such extensions are not available, they will not be used.

9.28.1.18 HWVirtExNestedPagingEnabled (read/write)

boolean IMachine::HWVirtExNestedPagingEnabled

This setting determines whether VirtualBox will try to make use of the nested paging
extension of Intel VT-x and AMD-V. Note that in case such extensions are not available,
they will not be used.

9.28.1.19 HWVirtExVPIDEnabled (read/write)

boolean IMachine::HWVirtExVPIDEnabled

This setting determines whether VirtualBox will try to make use of the VPID exten-
sion of Intel VT-x. Note that in case such extensions are not available, they will not be
used.

9.28.1.20 PAEEnabled (read/write)

boolean IMachine::PAEEnabled

This setting determines whether VirtualBox will expose the Physical Address Exten-
sion (PAE) feature of the host CPU to the guest. Note that in case PAE is not available,
it will not be reported.

9.28.1.21 snapshotFolder (read/write)

wstring IMachine::snapshotFolder

Full path to the directory used to store snapshot data (differencing hard disks and
saved state files) of this machine.

The initial value of this property is <path_to_settings_file>/<machine_uuid>.
Currently, it is an error to try to change this property on a machine that has snap-

shots (because this would require to move possibly large files to a different location).
A separate method will be available for this purpose later.

128

9 Classes (interfaces)

Note: Setting this property to null will restore the initial value.

Note: When setting this property, the specified path can be absolute (full
path) or relative to the directory where the machine settings file is located.
When reading this property, a full path is always returned.

Note: The specified path may not exist, it will be created when necessary.

9.28.1.22 VRDPServer (read-only)

IVRDPServer IMachine::VRDPServer

VRDP server object.

9.28.1.23 hardDiskAttachments (read-only)

IHardDiskAttachment IMachine::hardDiskAttachments[]

Array of hard disks attached to this machine.

9.28.1.24 DVDDrive (read-only)

IDVDDrive IMachine::DVDDrive

Associated DVD drive object.

9.28.1.25 floppyDrive (read-only)

IFloppyDrive IMachine::floppyDrive

Associated floppy drive object.

9.28.1.26 USBController (read-only)

IUSBController IMachine::USBController

Associated USB controller object.

Note: If USB functionality is not available in the given edition of VirtualBox,
this method will set the result code to E_NOTIMPL.

129

9 Classes (interfaces)

9.28.1.27 audioAdapter (read-only)

IAudioAdapter IMachine::audioAdapter

Associated audio adapter, always present.

9.28.1.28 storageControllers (read-only)

IStorageController IMachine::storageControllers[]

Array of storage controllers attached to this machine.

9.28.1.29 settingsFilePath (read-only)

wstring IMachine::settingsFilePath

Full name of the file containing machine settings data.

9.28.1.30 settingsFileVersion (read-only)

wstring IMachine::settingsFileVersion

Current version of the format of the settings file of this machine (settingsFilePath).
The version string has the following format:

x.y-platform

where x and y are the major and the minor format versions, and platform is the
platform identifier.

The current version usually matches the value of the IVirtualBox::settingsFormatVersion
attribute unless the settings file was created by an older version of VirtualBox and there
was a change of the settings file format since then.

Note that VirtualBox automatically converts settings files from older versions to the
most recent version when reading them (usually at VirtualBox startup) but it doesn’t
save the changes back until you call a method that implicitly saves settings (such as
setExtraData()) or call saveSettings() explicitly. Therefore, if the value of this attribute
differs from the value of IVirtualBox::settingsFormatVersion, then it means that the
settings file was converted but the result of the conversion is not yet saved to disk.

The above feature may be used by interactive front-ends to inform users about the
settings file format change and offer them to explicitly save all converted settings files
(the global and VM-specific ones), optionally create backup copies of the old settings
files before saving, etc.

See also: IVirtualBox::settingsFormatVersion, saveSettingsWithBackup()

130

9 Classes (interfaces)

9.28.1.31 settingsModified (read-only)

boolean IMachine::settingsModified

Whether the settings of this machine have been modified (but neither yet saved nor
discarded).

Note: Reading this property is only valid on instances returned by ISes-
sion::machine and on new machines created by IVirtualBox::createMachine()
or opened by IVirtualBox::openMachine() but not yet registered, or on unreg-
istered machines after calling IVirtualBox::unregisterMachine(). For all other
cases, the settings can never be modified.

Note: For newly created unregistered machines, the value of this property is
always TRUE until saveSettings() is called (no matter if any machine settings
have been changed after the creation or not). For opened machines the value
is set to FALSE (and then follows to normal rules).

9.28.1.32 sessionState (read-only)

SessionState IMachine::sessionState

Current session state for this machine.

9.28.1.33 sessionType (read-only)

wstring IMachine::sessionType

Type of the session. If sessionState is SessionSpawning or SessionOpen, this at-
tribute contains the same value as passed to the IVirtualBox::openRemoteSession()
method in the type parameter. If the session was opened directly using IVirtual-
Box::openSession(), or if sessionState is SessionClosed, the value of this attribute is
null.

9.28.1.34 sessionPid (read-only)

unsigned long IMachine::sessionPid

Identifier of the session process. This attribute contains the platform-dependent
identifier of the process that has opened a direct session for this machine using the
IVirtualBox::openSession() call. The returned value is only valid if sessionState is
SessionOpen or SessionClosing (i.e. a session is currently open or being closed) by the
time this property is read.

131

9 Classes (interfaces)

9.28.1.35 state (read-only)

MachineState IMachine::state

Current execution state of this machine.

9.28.1.36 lastStateChange (read-only)

long long IMachine::lastStateChange

Time stamp of the last execution state change, in milliseconds since 1970-01-01
UTC.

9.28.1.37 stateFilePath (read-only)

wstring IMachine::stateFilePath

Full path to the file that stores the execution state of the machine when it is in the
:: state.

Note: When the machine is not in the Saved state, this attribute null.

9.28.1.38 logFolder (read-only)

wstring IMachine::logFolder

Full path to the folder that stores a set of rotated log files recorded during machine
execution. The most recent log file is named VBox.log, the previous log file is named
VBox.log.1 and so on (up to VBox.log.3 in the current version).

9.28.1.39 currentSnapshot (read-only)

ISnapshot IMachine::currentSnapshot

Current snapshot of this machine.

Note: A null object is returned if the machine doesn’t have snapshots.

See also: ISnapshot

9.28.1.40 snapshotCount (read-only)

unsigned long IMachine::snapshotCount

Number of snapshots taken on this machine. Zero means the machine doesn’t have
any snapshots.

132

9 Classes (interfaces)

9.28.1.41 currentStateModified (read-only)

boolean IMachine::currentStateModified

Returns true if the current state of the machine is not identical to the state stored
in the current snapshot.

The current state is identical to the current snapshot right after one of the following
calls are made:

• IConsole::discardCurrentState() or IConsole::discardCurrentSnapshotAndState()

• IConsole::takeSnapshot() (issued on a powered off or saved machine, for which
settingsModified returns false)

• setCurrentSnapshot()

The current state remains identical until one of the following happens:

• settings of the machine are changed

• the saved state is discarded

• the current snapshot is discarded

• an attempt to execute the machine is made

Note: For machines that don’t have snapshots, this property is always false.

9.28.1.42 sharedFolders (read-only)

ISharedFolder IMachine::sharedFolders[]

Collection of shared folders for this machine (permanent shared folders). These
folders are shared automatically at machine startup and available only to the guest OS
installed within this machine.

New shared folders are added to the collection using createSharedFolder(). Existing
shared folders can be removed using removeSharedFolder().

9.28.1.43 clipboardMode (read/write)

ClipboardMode IMachine::clipboardMode

Synchronization mode between the host OS clipboard and the guest OS clipboard.

133

9 Classes (interfaces)

9.28.1.44 guestPropertyNotificationPatterns (read/write)

wstring IMachine::guestPropertyNotificationPatterns

A comma-separated list of simple glob patterns. Changes to guest proper-
ties whose name matches one of the patterns will generate an IVirtualBoxCall-
back::onGuestPropertyChange() signal.

9.28.2 addStorageController
IStorageController IMachine::addStorageController(

[in] wstring name,
[in] StorageBus connectionType)

Adds a new storage controller (SCSI or SATA controller) to the machine and returns
it as an instance of IStorageController.
name identifies the controller for subsequent calls such as getStorageControllerBy-

Name() or removeStorageController() or attachHardDisk().
After the controller has been added, you can set its exact type by setting the IStor-

ageController::controllerType.
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_IN_USE: A storage controller with given name exists al-
ready.

• E_INVALIDARG: Invalid controllerType.

9.28.3 attachHardDisk
void IMachine::attachHardDisk(

[in] uuid id,
[in] wstring name,
[in] long controllerPort,
[in] long device)

Attaches a virtual hard disk (IHardDisk, identified by the given UUID id) to the
given hard disk controller (IStorageController, identified by name), at the indicated
port and device.

For the IDE bus, the controllerPort parameter can be either 0 or 1, to specify
the primary or secondary IDE controller, respectively. For the primary controller of
the IDE bus, device can be either 0 or 1, to specify the master or the slave device,
respectively. For the secondary IDE controller, the device number must be 1 because
VirtualBox reserves the secondary master for the CD-ROM drive.

For an SATA controller, controllerPort must be a number ranging from 0 to 29.
For a SCSI controller, controllerPort must be a number ranging from 0 to 15.

For both SCSI and SATA, the device parameter is unused and must be 0.

134

9 Classes (interfaces)

The specified device slot must not have another disk attached to it, or this method
will fail.

See IHardDisk for more detailed information about attaching hard disks.

Note: You cannot attach a hard disk to a running machine. Also, you cannot
attach a hard disk to a newly created machine until this machine’s settings are
saved to disk using saveSettings().

Note: If the hard disk is being attached indirectly, a new differencing hard
disk will implicitly be created for it and attached instead. If the changes made
to the machine settings (including this indirect attachment) are later can-
celled using discardSettings(), this implicitly created differencing hard disk
will implicitly be deleted.

If this method fails, the following error codes may be reported:

• E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.

• VBOX_E_INVALID_OBJECT_STATE: Attempt to attach hard disk to an un-
registered virtual machine.

• VBOX_E_INVALID_VM_STATE: Invalid machine state.

• VBOX_E_OBJECT_IN_USE: Hard disk already attached to this or another vir-
tual machine.

9.28.4 canShowConsoleWindow
boolean IMachine::canShowConsoleWindow()

Returns true if the VM console process can activate the console window and bring
it to foreground on the desktop of the host PC.

Note: This method will fail if a session for this machine is not currently open.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Machine session is not open.

135

9 Classes (interfaces)

9.28.5 createSharedFolder
void IMachine::createSharedFolder(

[in] wstring name,
[in] wstring hostPath,
[in] boolean writable)

Creates a new permanent shared folder by associating the given logical name with
the given host path, adds it to the collection of shared folders and starts sharing it.
Refer to the description of ISharedFolder to read more about logical names.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_IN_USE: Shared folder already exists.

• VBOX_E_FILE_ERROR: Shared folder hostPath not accessible.

9.28.6 deleteSettings
void IMachine::deleteSettings()

Deletes the settings file of this machine from disk. The machine must not be regis-
tered in order for this operation to succeed.

Note: settingsModified will return TRUE after this method successfully re-
turns.

Note: Calling this method is only valid on instances returned by ISes-
sion::machine and on new machines created by IVirtualBox::createMachine()
or opened by IVirtualBox::openMachine() but not yet registered, or on unreg-
istered machines after calling IVirtualBox::unregisterMachine().

Note: The deleted machine settings file can be restored (saved again) by
calling saveSettings().

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Cannot delete settings of a registered ma-
chine or machine not mutable.

• VBOX_E_IPRT_ERROR: Could not delete the settings file.

136

9 Classes (interfaces)

9.28.7 detachHardDisk
void IMachine::detachHardDisk(

[in] wstring name,
[in] long controllerPort,
[in] long device)

Detaches the virtual hard disk attached to a device slot of the specified bus.
Detaching the hard disk from the virtual machine is deferred. This means that the

hard disk remains associated with the machine when this method returns and gets
actually de-associated only after a successful saveSettings() call. See IHardDisk for
more detailed information about attaching hard disks.

Note: You cannot detach the hard disk from a running machine.

Note: Detaching differencing hard disks implicitly created by attachHard-
Disk() for the indirect attachment using this method will not implicitly delete
them. The IHardDisk::deleteStorage() operation should be explicitly per-
formed by the caller after the hard disk is successfully detached and the set-
tings are saved with saveSettings(), if it is the desired action.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Attempt to detach hard disk from a running
virtual machine.

• VBOX_E_OBJECT_NOT_FOUND: No hard disk attached to given slot/bus.

• VBOX_E_NOT_SUPPORTED: Hard disk format does not support storage dele-
tion.

9.28.8 discardSettings
void IMachine::discardSettings()

Discards any changes to the machine settings made since the session has been
opened or since the last call to saveSettings() or discardSettings().

Note: Calling this method is only valid on instances returned by ISes-
sion::machine and on new machines created by IVirtualBox::createMachine()
or opened by IVirtualBox::openMachine() but not yet registered, or on unreg-
istered machines after calling IVirtualBox::unregisterMachine().

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.

137

9 Classes (interfaces)

9.28.9 enumerateGuestProperties
void IMachine::enumerateGuestProperties(

[in] wstring patterns,
[out] wstring name[],
[out] wstring value[],
[out] unsigned long long timestamp[],
[out] wstring flags[])

Return a list of the guest properties matching a set of patterns along with their
values, time stamps and flags.

9.28.10 export
IVirtualSystemDescription IMachine::export(

[in] IAppliance aAppliance)

Exports the machine to an OVF appliance. See IAppliance for the steps required to
export VirtualBox machines to OVF.

9.28.11 findSnapshot
ISnapshot IMachine::findSnapshot(

[in] wstring name)

Returns a snapshot of this machine with the given name.
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Virtual machine has no snapshots or snapshot
not found.

9.28.12 getBootOrder
DeviceType IMachine::getBootOrder(

[in] unsigned long position)

Returns the device type that occupies the specified position in the boot order.
@todo [remove?] If the machine can have more than one device of the returned

type (such as hard disks), then a separate method should be used to retrieve the
individual device that occupies the given position.

If here are no devices at the given position, then :: is returned.
@todo getHardDiskBootOrder(), getNetworkBootOrder()
If this method fails, the following error codes may be reported:

• E_INVALIDARG: Boot position out of range.

138

9 Classes (interfaces)

9.28.13 getExtraData
wstring IMachine::getExtraData(

[in] wstring key)

Returns associated machine-specific extra data.
If the requested data key does not exist, this function will succeed and return NULL

in the value argument.
If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

9.28.14 getGuestProperty
void IMachine::getGuestProperty(

[in] wstring name,
[out] wstring value,
[out] unsigned long long timestamp,
[out] wstring flags)

Reads an entry from the machine’s guest property store.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Machine session is not open.

9.28.15 getGuestPropertyTimestamp
unsigned long long IMachine::getGuestPropertyTimestamp(

[in] wstring property)

Reads a property timestamp from the machine’s guest property store.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Machine session is not open.

9.28.16 getGuestPropertyValue
wstring IMachine::getGuestPropertyValue(

[in] wstring property)

Reads a value from the machine’s guest property store.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Machine session is not open.

139

9 Classes (interfaces)

9.28.17 getHardDisk
IHardDisk IMachine::getHardDisk(

[in] wstring name,
[in] long controllerPort,
[in] long device)

Returns the virtual hard disk attached to a device slot of the specified bus.
Note that if the hard disk was indirectly attached by attachHardDisk() to the given

device slot then this method will return not the same object as passed to the attach-
HardDisk() call. See IHardDisk for more detailed information about attaching hard
disks.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: No hard disk attached to given slot/bus.

9.28.18 getHardDiskAttachmentsOfController
IHardDiskAttachment IMachine::getHardDiskAttachmentsOfController(

[in] wstring name)

Returns an array of hard disk attachments which are attached to the the controller
with the given name.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t
exist.

9.28.19 getNetworkAdapter
INetworkAdapter IMachine::getNetworkAdapter(

[in] unsigned long slot)

Returns the network adapter associated with the given slot. Slots are numbered se-
quentially, starting with zero. The total number of adapters per machine is defined by
the ISystemProperties::networkAdapterCount property, so the maximum slot number
is one less than that property’s value.

If this method fails, the following error codes may be reported:

• E_INVALIDARG: Invalid slot number.

9.28.20 getNextExtraDataKey
void IMachine::getNextExtraDataKey(

[in] wstring key,
[out] wstring nextKey,
[out] wstring nextValue)

140

9 Classes (interfaces)

Returns the machine-specific extra data key name following the supplied key.
An error is returned if the supplied key does not exist. NULL is returned in nextKey

if the supplied key is the last key. When supplying NULL for the key, the first key item
is returned in nextKey (if there is any). nextValue is an optional parameter and if
supplied, the next key’s value is returned in it.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Extra data key not found.

9.28.21 getParallelPort
IParallelPort IMachine::getParallelPort(

[in] unsigned long slot)

Returns the parallel port associated with the given slot. Slots are numbered sequen-
tially, starting with zero. The total number of parallel ports per machine is defined
by the ISystemProperties::parallelPortCount property, so the maximum slot number is
one less than that property’s value.

If this method fails, the following error codes may be reported:

• E_INVALIDARG: Invalid slot number.

9.28.22 getSerialPort
ISerialPort IMachine::getSerialPort(

[in] unsigned long slot)

Returns the serial port associated with the given slot. Slots are numbered sequen-
tially, starting with zero. The total number of serial ports per machine is defined by
the ISystemProperties::serialPortCount property, so the maximum slot number is one
less than that property’s value.

If this method fails, the following error codes may be reported:

• E_INVALIDARG: Invalid slot number.

9.28.23 getSnapshot
ISnapshot IMachine::getSnapshot(

[in] uuid id)

Returns a snapshot of this machine with the given UUID. A null UUID can be used
to obtain the first snapshot taken on this machine. This is useful if you want to traverse
the whole tree of snapshots starting from the root.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Virtual machine has no snapshots or snapshot
not found.

141

9 Classes (interfaces)

9.28.24 getStorageControllerByName
IStorageController IMachine::getStorageControllerByName(

[in] wstring name)

Returns a storage controller with the given name.
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t
exist.

9.28.25 removeSharedFolder
void IMachine::removeSharedFolder(

[in] wstring name)

Removes the permanent shared folder with the given name previously created by
createSharedFolder() from the collection of shared folders and stops sharing it.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.

• VBOX_E_OBJECT_NOT_FOUND: Shared folder name does not exist.

9.28.26 removeStorageController
void IMachine::removeStorageController(

[in] wstring name)

Removes a storage controller from the machine.
If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t
exist.

9.28.27 saveSettings
void IMachine::saveSettings()

Saves any changes to machine settings made since the session has been opened or
a new machine has been created, or since the last call to saveSettings() or discardSet-
tings(). For registered machines, new settings become visible to all other VirtualBox
clients after successful invocation of this method.

Note: The method sends IVirtualBoxCallback::onMachineDataChange() no-
tification event after the configuration has been successfully saved (only for
registered machines).

142

9 Classes (interfaces)

Note: Calling this method is only valid on instances returned by ISes-
sion::machine and on new machines created by IVirtualBox::createMachine()
but not yet registered, or on unregistered machines after calling IVirtual-
Box::unregisterMachine().

If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

• E_ACCESSDENIED: Modification request refused.

9.28.28 saveSettingsWithBackup
wstring IMachine::saveSettingsWithBackup()

Creates a backup copy of the machine settings file (settingsFilePath) in case of auto-
conversion, and then calls saveSettings().

Note that the backup copy is created only if the settings file auto-conversion took
place (see settingsFileVersion for details). Otherwise, this call is fully equivalent to
saveSettings() and no backup copying is done.

The backup copy is created in the same directory where the original settings file is
located. It is given the following file name:

original.xml.x.y-platform.bak

where original.xml is the original settings file name (excluding path), and
x.y-platform is the version of the old format of the settings file (before auto-
conversion).

If the given backup file already exists, this method will try to add the .N suffix to
the backup file name (where N counts from 0 to 9) and copy it again until it succeeds.
If all suffixes are occupied, or if any other copy error occurs, this method will return a
failure.

If the copy operation succeeds, the bakFileName return argument will receive a
full path to the created backup file (for informational purposes). Note that this will
happen even if the subsequent saveSettings() call performed by this method after the
copy operation, fails.

Note: The VirtualBox API never calls this method. It is intended purely for the
purposes of creating backup copies of the settings files by front-ends before
saving the results of the automatically performed settings conversion to disk.

See also: settingsFileVersion
If this method fails, the following error codes may be reported:

143

9 Classes (interfaces)

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

• VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.

• E_ACCESSDENIED: Modification request refused.

9.28.29 setBootOrder
void IMachine::setBootOrder(

[in] unsigned long position,
[in] DeviceType device)

Puts the given device to the specified position in the boot order.
To indicate that no device is associated with the given position, :: should be used.
@todo setHardDiskBootOrder(), setNetworkBootOrder()
If this method fails, the following error codes may be reported:

• E_INVALIDARG: Boot position out of range.

• E_NOTIMPL: Booting from USB device currently not supported.

9.28.30 setCurrentSnapshot
void IMachine::setCurrentSnapshot(

[in] uuid id)

Sets the current snapshot of this machine.

Note: In the current implementation, this operation is not implemented.

9.28.31 setExtraData
void IMachine::setExtraData(

[in] wstring key,
[in] wstring value)

Sets associated machine-specific extra data.
If you pass NULL as a key value, the given key will be deleted.

Note: Before performing the actual data change, this method will ask all
registered callbacks using the IVirtualBoxCallback::onExtraDataCanChange()
notification for a permission. If one of the callbacks refuses the new value,
the change will not be performed.

144

9 Classes (interfaces)

Note: On success, the IVirtualBoxCallback::onExtraDataChange() notifica-
tion is called to inform all registered callbacks about a successful data change.

Note: This method can be called outside the machine session and therefore
it’s a caller’s responsibility to handle possible race conditions when several
clients change the same key at the same time.

If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

9.28.32 setGuestProperty
void IMachine::setGuestProperty(

[in] wstring property,
[in] wstring value,
[in] wstring flags)

Sets, changes or deletes an entry in the machine’s guest property store.
If this method fails, the following error codes may be reported:

• E_ACCESSDENIED: Property cannot be changed.

• E_INVALIDARG: Invalid flags.

• VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable or session not
open.

• VBOX_E_INVALID_OBJECT_STATE: Cannot set transient property when ma-
chine not running.

9.28.33 setGuestPropertyValue
void IMachine::setGuestPropertyValue(

[in] wstring property,
[in] wstring value)

Sets, changes or deletes a value in the machine’s guest property store. The flags
field will be left unchanged or created empty for a new property.

If this method fails, the following error codes may be reported:

• E_ACCESSDENIED: Property cannot be changed.

145

9 Classes (interfaces)

• VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable or session not
open.

• VBOX_E_INVALID_OBJECT_STATE: Cannot set transient property when ma-
chine not running.

9.28.34 showConsoleWindow
unsigned long long IMachine::showConsoleWindow()

Activates the console window and brings it to foreground on the desktop of the host
PC. Many modern window managers on many platforms implement some sort of focus
stealing prevention logic, so that it may be impossible to activate a window without
the help of the currently active application. In this case, this method will return a
non-zero identifier that represents the top-level window of the VM console process.
The caller, if it represents a currently active process, is responsible to use this identifier
(in a platform-dependent manner) to perform actual window activation.

Note: This method will fail if a session for this machine is not currently open.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Machine session is not open.

9.29 IMachineDebugger

Note: This interface is not supported in the web service.

9.29.1 Attributes

9.29.1.1 singlestep (read/write)

boolean IMachineDebugger::singlestep

Switch for enabling singlestepping.

9.29.1.2 recompileUser (read/write)

boolean IMachineDebugger::recompileUser

Switch for forcing code recompilation for user mode code.

146

9 Classes (interfaces)

9.29.1.3 recompileSupervisor (read/write)

boolean IMachineDebugger::recompileSupervisor

Switch for forcing code recompilation for supervisor mode code.

9.29.1.4 PATMEnabled (read/write)

boolean IMachineDebugger::PATMEnabled

Switch for enabling and disabling the PATM component.

9.29.1.5 CSAMEnabled (read/write)

boolean IMachineDebugger::CSAMEnabled

Switch for enabling and disabling the CSAM component.

9.29.1.6 logEnabled (read/write)

boolean IMachineDebugger::logEnabled

Switch for enabling and disabling logging.

9.29.1.7 HWVirtExEnabled (read-only)

boolean IMachineDebugger::HWVirtExEnabled

Flag indicating whether the VM is currently making use of CPU hardware virtualiza-
tion extensions.

9.29.1.8 HWVirtExNestedPagingEnabled (read-only)

boolean IMachineDebugger::HWVirtExNestedPagingEnabled

Flag indicating whether the VM is currently making use of the nested paging CPU
hardware virtualization extension.

9.29.1.9 HWVirtExVPIDEnabled (read-only)

boolean IMachineDebugger::HWVirtExVPIDEnabled

Flag indicating whether the VM is currently making use of the VPID VT-x extension.

9.29.1.10 PAEEnabled (read-only)

boolean IMachineDebugger::PAEEnabled

Flag indicating whether the VM is currently making use of the Physical Address
Extension CPU feature.

147

9 Classes (interfaces)

9.29.1.11 virtualTimeRate (read/write)

unsigned long IMachineDebugger::virtualTimeRate

The rate at which the virtual time runs expressed as a percentage. The accepted
range is 2% to 20000%.

9.29.1.12 VM (read-only)

unsigned long long IMachineDebugger::VM

Gets the VM handle. This is only for internal use while we carve the details of this
interface.

9.29.2 dumpStats
void IMachineDebugger::dumpStats(

[in] wstring pattern)

Dumps VM statistics.

9.29.3 getStats
void IMachineDebugger::getStats(

[in] wstring pattern,
[in] boolean withDescriptions,
[out] wstring stats)

Get the VM statistics in a XMLish format.

9.29.4 injectNMI
void IMachineDebugger::injectNMI()

Inject an NMI into a running VT-x/AMD-V VM.

9.29.5 resetStats
void IMachineDebugger::resetStats(

[in] wstring pattern)

Reset VM statistics.

148

9 Classes (interfaces)

9.30 IManagedObjectRef

Note: This interface is supported in the web service only, not in COM/XPCOM.

Managed object reference.
Only within the webservice, a managed object reference (which is really an opaque

number) allows a webservice client to address an object that lives in the address space
of the webservice server.

Behind each managed object reference, there is a COM object that lives in the web-
service server’s address space. The COM object is not freed until the managed object
reference is released, either by an explicit call to release() or by logging off from the
webservice (IWebsessionManager::logoff()), which releases all objects created during
the webservice session.

Whenever a method call of the VirtualBox API returns a COM object, the webservice
representation of that method will instead return a managed object reference, which
can then be used to invoke methods on that object.

9.30.1 getInterfaceName
wstring IManagedObjectRef::getInterfaceName()

Returns the name of the interface that this managed object represents, for example,
“IMachine”, as a string.

9.30.2 release
void IManagedObjectRef::release()

Releases this managed object reference and frees the resources that were allocated
for it in the webservice server process. After calling this method, the identifier of the
reference can no longer be used.

9.31 IMedium

The IMedium interface is a common interface for all objects representing virtual media
such as hard disks, CD/DVD images and floppy images.

Each medium is associated with a storage unit (such as a file on the host computer
or a network resource) that holds actual data. The location of the storage unit is repre-
sented by the #location attribute. The value of this attribute is media type dependent.

The exact media type may be determined by querying the appropriate interface such
as:

• IHardDisk (virtual hard disks)

149

9 Classes (interfaces)

• IDVDImage (standard CD/DVD ISO image files)

• IFloppyImage (raw floppy image files)

Existing media are opened using the following methods, depending on the media
type:

• IVirtualBox::openHardDisk()

• IVirtualBox::openDVDImage()

• IVirtualBox::openFloppyImage()

New hard disk media are created using the IVirtualBox::createHardDisk() method.
CD/DVD and floppy images are created outside VirtualBox, usually by storing a copy
of the real medium of the corresponding type in a regular file.

Known Media
When an existing medium gets opened for the first time, it gets automatically re-

membered by the given VirtualBox installation or, in other words, becomes a known
medium. Known media are stored in the media registry transparently maintained by
VirtualBox and stored in settings files so that this registry is preserved when VirtualBox
is not running.

Newly created virtual hard disks get remembered only when the associated storage
unit is actually created (see IHardDisk for more details).

All known media can be enumerated using IVirtualBox::hardDisks[], IVirtual-
Box::DVDImages[] and IVirtualBox::floppyImages[] attributes. Individual media can
be quickly found by UUID using IVirtualBox::getHardDisk() and similar methods or by
location using IVirtualBox::findHardDisk() and similar methods.

Only known media can be attached to virtual machines.
Removing known media from the media registry is performed when the given

medium is closed using the close() method or when its associated storage unit is
deleted (only for hard disks).

Accessibility Checks
The given medium (with the created storage unit) is considered to be accessible

when its storage unit can be read. Accessible media are indicated by the :: value of
the state attribute. When the storage unit cannot be read (for example, because it
is located on a disconnected network resource, or was accidentally deleted outside
VirtualBox), the medium is considered to be inaccessible which is indicated by the ::
state. The details about the reason of being inaccessible can be obtained using the
lastAccessError attribute.

A new accessibility check is performed each time the state attribute is read. Please
note that this check may take long time (several seconds or even minutes, depending
on the storage unit location and format), and will block the calling thread until fin-
ished. For this reason, it is recommended to never read this attribute on the main UI
thread to avoid making the UI unresponsive.

Note that when VirtualBox starts up (e.g. the VirtualBox object gets created for the
first time), all known media are in the :: state but the value of the lastAccessError

150

9 Classes (interfaces)

attribute is null because no actual accessibility check is made on startup. This is
done to make the VirtualBox object ready for serving requests as fast as possible and
let the end-user application decide if it needs to check media accessibility right away
or not.

9.31.1 Attributes

9.31.1.1 id (read-only)

uuid IMedium::id

UUID of the medium. For a newly created medium, this value is a randomly gener-
ated UUID.

Note: For media in one of MediaState_NotCreated, MediaState_Creating or
MediaState_Deleting states, the value of this property is undefined and will
most likely be an empty UUID.

9.31.1.2 description (read/write)

wstring IMedium::description

Optional description of the medium. For newly created media, the value of this
attribute value is null.

Media types that don’t support this attribute will return E_NOTIMPL in attempt to
get or set this attribute’s value.

Note: For some storage types, reading this attribute may return an outdated
(last known) value when state is :: or :: because the value of this attribute
is stored within the storage unit itself. Also note that changing the attribute
value is not possible in such case, as well as when the medium is the :: state.

9.31.1.3 state (read-only)

MediaState IMedium::state

Current media state. Inspect MediaState values for details.
Reading this attribute may take a long time because an accessibility check of the

storage unit is performed each time the attribute is read. This check may cause a
significant delay if the storage unit of the given medium is, for example, a file located
on a network share which is not currently accessible due to connectivity problems –
the call will not return until a timeout interval defined by the host OS for this operation
expires.

151

9 Classes (interfaces)

If the last known state of the medium is :: and the accessibility check fails then the
state would be set to :: and lastAccessError may be used to get more details about the
failure. If the state of the medium is :: or :: then it remains the same, and a non-null
value of lastAccessError will indicate a failed accessibility check in this case.

Note that not all media states are applicable to all media types. For example, states
::, ::, ::, :: are meaningless for IDVDImage and IFloppyImage media.

9.31.1.4 location (read/write)

wstring IMedium::location

Location of the storage unit holding media data.
The format of the location string is media type specific. For media types using

regular files in a host’s file system, the location string is the full file name.
Some media types may support changing the storage unit location by simply chang-

ing the value of this property. If this operation is not supported, the implementation
will return E_NOTIMPL in attempt to set this attribute’s value.

When setting a value of the location attribute which is a regular file in the host’s
file system, the given file name may be either relative to the VirtualBox home folder
or absolute. Note that if the given location specification does not contain the file
extension part then a proper default extension will be automatically appended by the
implementation depending on the media type.

9.31.1.5 name (read-only)

wstring IMedium::name

Name of the storage unit holding media data.
The returned string is a short version of the location attribute that is suitable for

representing the medium in situations where the full location specification is too long
(such as lists and comboboxes in GUI frontends). This string is also used by frontends
to sort the media list alphabetically when needed.

For example, for locations that are regular files in the host’s file system, the value of
this attribute is just the file name (+ extension), without the path specification.

Note that as opposed to the location attribute, the name attribute will not necessary
be unique for a list of media of the given type and format.

9.31.1.6 size (read-only)

unsigned long long IMedium::size

Physical size of the storage unit used to hold media data (in bytes).

Note: For media whose state is ::, the value of this property is the last known
size. For :: media, the returned value is zero.

152

9 Classes (interfaces)

9.31.1.7 lastAccessError (read-only)

wstring IMedium::lastAccessError

Text message that represents the result of the last accessibility check.
Accessibility checks are performed each time the state attribute is read. A null

string is returned if the last accessibility check was successful. A non-null string indi-
cates a failure and should normally describe a reason of the failure (for example, a file
read error).

9.31.1.8 machineIds (read-only)

uuid IMedium::machineIds[]

Array of UUIDs of all machines this medium is attached to.
A null array is returned if this medium is not attached to any machine or to any

machine’s snapshot.

Note: The returned array will include a machine even if this medium is not
attached to that machine in the current state but attached to it in one of the
machine’s snapshots. See getSnapshotIds() for details.

9.31.2 close
void IMedium::close()

Closes this medium.
The hard disk must not be attached to any known virtual machine and must not

have any known child hard disks, otherwise the operation will fail.
When the hard disk is successfully closed, it gets removed from the list of remem-

bered hard disks, but its storage unit is not deleted. In particular, this means that this
hard disk can be later opened again using the IVirtualBox::openHardDisk() call.

Note that after this method successfully returns, the given hard disk object becomes
uninitialized. This means that any attempt to call any of its methods or attributes will
fail with the "Object not ready" (E_ACCESSDENIED) error.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: Invalid media state (other than not cre-
ated, created or inaccessible).

• VBOX_E_OBJECT_IN_USE: Medium attached to virtual machine.

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

153

9 Classes (interfaces)

9.31.3 getSnapshotIds
uuid IMedium::getSnapshotIds(

[in] uuid machineId)

Returns an array of UUIDs of all snapshots of the given machine where this medium
is attached to.

If the medium is attached to the machine in the current state, then the first element
in the array will always be the ID of the queried machine (i.e. the value equal to the
machineId argument), followed by snapshot IDs (if any).

If the medium is not attached to the machine in the current state, then the array will
contain only snapshot IDs.

The returned array may be null if this medium is not attached to the given machine
at all, neither in the current state nor in one of the snapshots.

9.31.4 lockRead
MediaState IMedium::lockRead()

Locks this medium for reading.
The read lock is shared: many clients can simultaneously lock the same media for

reading unless it is already locked for writing (see lockWrite()) in which case an error
is returned.

When the medium is locked for reading, it cannot be modified from within
VirtualBox. This means that any method that changes the properties of this medium
or contents of the storage unit will return an error (unless explicitly stated otherwise)
and that an attempt to start a virtual machine that wants to modify the medium will
also fail.

When the virtual machine is started up, it locks for reading all media it uses in read-
only mode. If some media cannot be locked for reading, the startup procedure will
fail.

The medium locked for reading must be unlocked using the unlockRead() method.
Calls to lockRead() can be nested and must be followed by the same number of paired
unlockRead() calls.

This method sets the media state to :: on success. The state prior to this call must be
::, :: or ::. As you can see, inaccessible media can be locked too. This is not an error;
this method performs a logical lock that prevents modifications of this media through
the VirtualBox API, not a physical lock of the underlying storage unit.

This method returns the current state of the medium before the operation.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: Invalid media state (e.g. not created,
locked, inaccessible, creating, deleting).

154

9 Classes (interfaces)

9.31.5 lockWrite
MediaState IMedium::lockWrite()

Locks this medium for writing.
The write lock, as opposed to lockRead(), is exclusive: there may be only one client

holding a write lock and there may be no read locks while the write lock is held.
When the medium is locked for writing, it cannot be modified from within

VirtualBox and it is not guaranteed that the values of its properties are up-to-date.
Any method that changes the properties of this medium or contents of the storage
unit will return an error (unless explicitly stated otherwise) and an attempt to start a
virtual machine wanting to modify or to read the medium will fail.

When the virtual machine is started up, it locks for writing all media it uses to write
data to. If any medium could not be locked for writing, the startup procedure will fail.

The medium locked for writing must be unlocked using the unlockWrite() method.
Calls to lockWrite() can not be nested and must be followed by aunlockWrite() call
before the next lockWrite call.

This method sets the media state to :: on success. The state prior to this call must
be :: or ::. As you can see, inaccessible media can be locked too. This is not an error;
this method performs a logical lock preventing modifications of this media through the
VirtualBox API, not a physical lock of the underlying storage unit.

For both, success and failure, this method returns the current state of the medium
before the operation.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: Invalid media state (e.g. not created,
locked, inaccessible, creating, deleting).

9.31.6 unlockRead
MediaState IMedium::unlockRead()

Cancels the read lock previously set by lockRead().
For both, success and failure, this method returns the current state of the medium

after the operation.
See lockRead() for more details.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: Medium not locked for reading.

9.31.7 unlockWrite
MediaState IMedium::unlockWrite()

Cancels the write lock previously set by lockWrite().
For both, success and failure, this method returns the current state of the medium

after the operation.

155

9 Classes (interfaces)

See lockWrite() for more details.
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: Medium not locked for writing.

9.32 IMouse

The IMouse interface represents the virtual machine’s mouse. Used in ICon-
sole::mouse.

Through this interface, the virtual machine’s virtual mouse can be controlled.

9.32.1 Attributes

9.32.1.1 absoluteSupported (read-only)

boolean IMouse::absoluteSupported

Whether the guest OS supports absolute mouse pointer positioning or not.

Note: VirtualBox Guest Tools need to be installed to the guest OS in order to
enable absolute mouse positioning support. You can use the IConsoleCall-
back::onMouseCapabilityChange() callback to be instantly informed about
changes of this attribute during virtual machine execution.

See also: putMouseEventAbsolute()

9.32.2 putMouseEvent
void IMouse::putMouseEvent(

[in] long dx,
[in] long dy,
[in] long dz,
[in] long buttonState)

Initiates a mouse event using relative pointer movements along x and y axis.
If this method fails, the following error codes may be reported:

• E_ACCESSDENIED: Console not powered up.

• VBOX_E_IPRT_ERROR: Could not send mouse event to virtual mouse.

156

9 Classes (interfaces)

9.32.3 putMouseEventAbsolute
void IMouse::putMouseEventAbsolute(

[in] long x,
[in] long y,
[in] long dz,
[in] long buttonState)

Positions the mouse pointer using absolute x and y coordinates. These coordinates
are expressed in pixels and start from [1,1] which corresponds to the top left corner
of the virtual display.

Note: This method will have effect only if absolute mouse positioning is sup-
ported by the guest OS.

See also: absoluteSupported
If this method fails, the following error codes may be reported:

• E_ACCESSDENIED: Console not powered up.

• VBOX_E_IPRT_ERROR: Could not send mouse event to virtual mouse.

9.33 INetworkAdapter

Represents a virtual network adapter that is attached to a virtual machine. Each virtual
machine has a fixed number of network adapter slots with one instance of this attached
to each of them. Call IMachine::getNetworkAdapter() to get the network adapter that
is attached to a given slot in a given machine.

Each network adapter can be in one of five attachment modes, which are rep-
resented by the NetworkAttachmentType enumeration; see the attachmentType at-
tribute.

9.33.1 Attributes

9.33.1.1 adapterType (read/write)

NetworkAdapterType INetworkAdapter::adapterType

Type of the virtual network adapter. Depending on this value, VirtualBox will pro-
vide a different virtual network hardware to the guest.

9.33.1.2 slot (read-only)

unsigned long INetworkAdapter::slot

Slot number this adapter is plugged into. Corresponds to the value you pass to
IMachine::getNetworkAdapter() to obtain this instance.

157

9 Classes (interfaces)

9.33.1.3 enabled (read/write)

boolean INetworkAdapter::enabled

Flag whether the network adapter is present in the guest system. If disabled, the
virtual guest hardware will not contain this network adapter. Can only be changed
when the VM is not running.

9.33.1.4 MACAddress (read/write)

wstring INetworkAdapter::MACAddress

Ethernet MAC address of the adapter, 12 hexadecimal characters. When setting it to
NULL, VirtualBox will generate a unique MAC address.

9.33.1.5 attachmentType (read-only)

NetworkAttachmentType INetworkAdapter::attachmentType

9.33.1.6 hostInterface (read/write)

wstring INetworkAdapter::hostInterface

Name of the host network interface the VM is attached to.

9.33.1.7 internalNetwork (read/write)

wstring INetworkAdapter::internalNetwork

Name of the internal network the VM is attached to.

9.33.1.8 NATNetwork (read/write)

wstring INetworkAdapter::NATNetwork

Name of the NAT network the VM is attached to.

9.33.1.9 cableConnected (read/write)

boolean INetworkAdapter::cableConnected

Flag whether the adapter reports the cable as connected or not. It can be used to
report offline situations to a VM.

9.33.1.10 lineSpeed (read/write)

unsigned long INetworkAdapter::lineSpeed

Line speed reported by custom drivers, in units of 1 kbps.

158

9 Classes (interfaces)

9.33.1.11 traceEnabled (read/write)

boolean INetworkAdapter::traceEnabled

Flag whether network traffic from/to the network card should be traced. Can only
be toggled when the VM is turned off.

9.33.1.12 traceFile (read/write)

wstring INetworkAdapter::traceFile

Filename where a network trace will be stored. If not set, VBox-pid.pcap will be
used.

9.33.2 attachToBridgedInterface
void INetworkAdapter::attachToBridgedInterface()

Attach the network adapter to a bridged host interface.

9.33.3 attachToHostOnlyInterface
void INetworkAdapter::attachToHostOnlyInterface()

Attach the network adapter to the host-only network.

9.33.4 attachToInternalNetwork
void INetworkAdapter::attachToInternalNetwork()

Attach the network adapter to an internal network.

9.33.5 attachToNAT
void INetworkAdapter::attachToNAT()

Attach the network adapter to the Network Address Translation (NAT) interface.

9.33.6 detach
void INetworkAdapter::detach()

Detach the network adapter

159

9 Classes (interfaces)

9.34 IParallelPort

The IParallelPort interface represents the virtual parallel port device.
The virtual parallel port device acts like an ordinary parallel port inside the virtual

machine. This device communicates to the real parallel port hardware using the name
of the parallel device on the host computer specified in the #path attribute.

Each virtual parallel port device is assigned a base I/O address and an IRQ number
that will be reported to the guest operating system and used to operate the given
parallel port from within the virtual machine.

See also: IMachine::getParallelPort

9.34.1 Attributes

9.34.1.1 slot (read-only)

unsigned long IParallelPort::slot

Slot number this parallel port is plugged into. Corresponds to the value you pass to
IMachine::getParallelPort() to obtain this instance.

9.34.1.2 enabled (read/write)

boolean IParallelPort::enabled

Flag whether the parallel port is enabled. If disabled, the parallel port will not be
reported to the guest OS.

9.34.1.3 IOBase (read/write)

unsigned long IParallelPort::IOBase

Base I/O address of the parallel port.

9.34.1.4 IRQ (read/write)

unsigned long IParallelPort::IRQ

IRQ number of the parallel port.

9.34.1.5 path (read/write)

wstring IParallelPort::path

Host parallel device name. If this parallel port is enabled, setting a null or an
empty string as this attribute’s value will result into an error.

160

9 Classes (interfaces)

9.35 IPerformanceCollector

The IPerformanceCollector interface represents a service that collects and stores per-
formance metrics data.

Performance metrics are associated with objects like IHost and IMachine. Each ob-
ject has a distinct set of performance metrics. The set can be obtained with getMet-
rics().

Metric data are collected at the specified intervals and are retained internally. The
interval and the number of samples retained can be set with setupMetrics().

Metrics are organized hierarchically, each level separated by slash (/). General
scheme for metric name is “Category/Metric[/SubMetric][:aggregation]“. For exam-
ple CPU/Load/User:avg metric name stands for: CPU category, Load metric, User sub-
metric, average aggregate. An aggregate function is computed over all retained data.
Valid aggregate functions are:

• avg – average

• min – minimum

• max – maximum

“Category/Metric” together form base metric name. A base metric is the smallest
unit for which a sampling interval and the number of retained samples can be set.
Only base metrics can be enabled and disabled. All sub-metrics are collected when
their base metric is collected. Collected values for any set of sub-metrics can be queried
with queryMetricsData(). When setting up metric parameters, querying metric data,
enabling or disabling metrics wildcards can be used in metric names to specify a subset
of metrics. For example, to select all CPU-related metrics use CPU/*, all averages can
be queried using *:avg and so on. To query metric values without aggregates *: can
be used.

The valid names for base metrics are:

• CPU/Load

• CPU/MHz

• RAM/Usage

The general sequence for collecting and retrieving the metrics is:

• Obtain an instance of IPerformanceCollector with IVirtualBox::performanceCollector

• Allocate and populate an array with references to objects the metrics will be
collected for. Use references to IHost and IMachine objects.

• Allocate and populate an array with base metric names the data will be collected
for.

• Call setupMetrics(). From now on the metric data will be collected and stored.

161

9 Classes (interfaces)

• Wait for the data to get collected.

• Allocate and populate an array with references to objects the metric values will
be queried for. You can re-use the object array used for setting base metrics.

• Allocate and populate an array with metric names the data will be collected for.
Note that metric names differ from base metric names.

• Call queryMetricsData(). The data that have been collected so far are returned.
Note that the values are still retained internally and data collection continues.

For an example of usage refer to the following files in VirtualBox SDK:

• Java: bindings/webservice/java/jax-ws/samples/metrictest.java

• Python: bindings/xpcom/python/sample/shellcommon.py

9.35.1 Attributes

9.35.1.1 metricNames (read-only)

wstring IPerformanceCollector::metricNames[]

Array of unique names of metrics.
This array represents all metrics supported by the performance collector. Individual

objects do not necessarily support all of them. getMetrics() can be used to get the list
of supported metrics for a particular object.

9.35.2 disableMetrics
IPerformanceMetric IPerformanceCollector::disableMetrics(

[in] wstring metricNames[],
[in] $unknown objects[])

Turns off collecting specified base metrics. Returns an array of IPerformanceMetric
describing the metrics have been affected.

Note: Null or empty metric name array means all metrics. Null or empty
object array means all existing objects. If metric name array contains a single
element and object array contains many, the single metric name array element
is applied to each object array element to form metric/object pairs.

162

9 Classes (interfaces)

9.35.3 enableMetrics
IPerformanceMetric IPerformanceCollector::enableMetrics(

[in] wstring metricNames[],
[in] $unknown objects[])

Turns on collecting specified base metrics. Returns an array of IPerformanceMetric
describing the metrics have been affected.

Note: Null or empty metric name array means all metrics. Null or empty
object array means all existing objects. If metric name array contains a single
element and object array contains many, the single metric name array element
is applied to each object array element to form metric/object pairs.

9.35.4 getMetrics
IPerformanceMetric IPerformanceCollector::getMetrics(

[in] wstring metricNames[],
[in] $unknown objects[])

Returns parameters of specified metrics for a set of objects.

Note: Null metrics array means all metrics. Null object array means all
existing objects.

9.35.5 queryMetricsData
long IPerformanceCollector::queryMetricsData(

[in] wstring metricNames[],
[in] $unknown objects[],
[out] wstring returnMetricNames[],
[out] $unknown returnObjects[],
[out] wstring returnUnits[],
[out] unsigned long returnScales[],
[out] unsigned long returnSequenceNumbers[],
[out] unsigned long returnDataIndices[],
[out] unsigned long returnDataLengths[])

Queries collected metrics data for a set of objects.
The data itself and related metric information are returned in seven parallel and one

flattened array of arrays. Elements of returnMetricNames, returnObjects,
returnUnits, returnScales, returnSequenceNumbers, returnDataIndices
and returnDataLengths with the same index describe one set of values corre-
sponding to a single metric.

163

9 Classes (interfaces)

The returnData parameter is a flattened array of arrays. Each start and length of
a sub-array is indicated by returnDataIndices and returnDataLengths. The
first value for metric metricNames[i] is at returnData[returnIndices[i]].

Note: Null or empty metric name array means all metrics. Null or empty
object array means all existing objects. If metric name array contains a single
element and object array contains many, the single metric name array element
is applied to each object array element to form metric/object pairs.

Note: Data collection continues behind the scenes after call to
queryMetricsData. The return data can be seen as the snapshot of the
current state at the time of queryMetricsData call. The internally kept
metric values are not cleared by the call. This makes possible querying differ-
ent subsets of metrics or aggregates with subsequent calls. If periodic query-
ing is needed it is highly suggested to query the values with interval*count
period to avoid confusion. This way a completely new set of data values will
be provided by each query.

9.35.6 setupMetrics
IPerformanceMetric IPerformanceCollector::setupMetrics(

[in] wstring metricNames[],
[in] $unknown objects[],
[in] unsigned long period,
[in] unsigned long count)

Sets parameters of specified base metrics for a set of objects. Returns an array of
IPerformanceMetric describing the metrics have been affected.

Note: Null or empty metric name array means all metrics. Null or empty
object array means all existing objects. If metric name array contains a single
element and object array contains many, the single metric name array element
is applied to each object array element to form metric/object pairs.

9.36 IPerformanceMetric

The IPerformanceMetric interface represents parameters of the given performance
metric.

164

9 Classes (interfaces)

9.36.1 Attributes

9.36.1.1 metricName (read-only)

wstring IPerformanceMetric::metricName

Name of the metric.

9.36.1.2 object (read-only)

$unknown IPerformanceMetric::object

Object this metric belongs to.

9.36.1.3 description (read-only)

wstring IPerformanceMetric::description

Textual description of the metric.

9.36.1.4 period (read-only)

unsigned long IPerformanceMetric::period

Time interval between samples, measured in seconds.

9.36.1.5 count (read-only)

unsigned long IPerformanceMetric::count

Number of recent samples retained by the performance collector for this metric.
When the collected sample count exceeds this number, older samples are discarded.

9.36.1.6 unit (read-only)

wstring IPerformanceMetric::unit

Unit of measurement.

9.36.1.7 minimumValue (read-only)

long IPerformanceMetric::minimumValue

Minimum possible value of this metric.

9.36.1.8 maximumValue (read-only)

long IPerformanceMetric::maximumValue

Maximum possible value of this metric.

165

9 Classes (interfaces)

9.37 IProgress

The IProgress interface is used to track and control asynchronous tasks within
VirtualBox.

An instance of this is returned every time VirtualBox starts an asynchronous task (in
other words, a separate thread) which continues to run after a method call returns. For
example, IConsole::saveState(), which saves the state of a running virtual machine,
can take a long time to complete. To be able to display a progress bar, a user interface
such as the VirtualBox graphical user interface can use the IProgress object returned
by that method.

Note that IProgress is a “read-only” interface in the sense that only the VirtualBox
internals behind the Main API can create and manipulate progress objects, whereas
client code can only use the IProgress object to monitor a task’s progress and, if can-
celable is true, cancel the task by calling cancel().

A task represented by IProgress consists of either one or several sub-operations that
run sequentially, one by one (see operation and operationCount). Every operation is
identified by a number (starting from 0) and has a separate description.

You can find the individual percentage of completion of the current operation in
operationPercent and the percentage of completion of the task as a whole in percent.

Similarly, you can wait for the completion of a particular operation via waitForOp-
erationCompletion() or for the completion of the whole task via waitForCompletion().

9.37.1 Attributes

9.37.1.1 id (read-only)

uuid IProgress::id

ID of the task.

9.37.1.2 description (read-only)

wstring IProgress::description

Description of the task.

9.37.1.3 initiator (read-only)

$unknown IProgress::initiator

Initiator of the task.

9.37.1.4 cancelable (read-only)

boolean IProgress::cancelable

Whether the task can be interrupted.

166

9 Classes (interfaces)

9.37.1.5 percent (read-only)

unsigned long IProgress::percent

Current progress value of the task as a whole, in percent. This value depends on
how many operations are already complete. Returns 100 if completed is true.

9.37.1.6 timeRemaining (read-only)

long IProgress::timeRemaining

Estimated remaining time until the task completes, in seconds. Returns 0 once the
task has completed; returns -1 if the remaining time cannot be computed, in particular
if the current progress is 0.

Even if a value is returned, the estimate will be unreliable for low progress values.
It will become more reliable as the task progresses; it is not recommended to display
an ETA before at least 20% of a task have completed.

9.37.1.7 completed (read-only)

boolean IProgress::completed

Whether the task has been completed.

9.37.1.8 canceled (read-only)

boolean IProgress::canceled

Whether the task has been canceled.

9.37.1.9 resultCode (read-only)

result IProgress::resultCode

Result code of the progress task. Valid only if completed is true.

9.37.1.10 errorInfo (read-only)

IVirtualBoxErrorInfo IProgress::errorInfo

Note: This attribute is not supported in the web service.

Extended information about the unsuccessful result of the progress operation. May
be NULL if no extended information is available. Valid only if completed is true and
resultCode indicates a failure.

167

9 Classes (interfaces)

9.37.1.11 operationCount (read-only)

unsigned long IProgress::operationCount

Number of sub-operations this task is divided into. Every task consists of at least
one suboperation.

9.37.1.12 operation (read-only)

unsigned long IProgress::operation

Number of the sub-operation being currently executed.

9.37.1.13 operationDescription (read-only)

wstring IProgress::operationDescription

Description of the sub-operation being currently executed.

9.37.1.14 operationPercent (read-only)

unsigned long IProgress::operationPercent

Progress value of the current sub-operation only, in percent.

9.37.2 cancel
void IProgress::cancel()

Cancels the task.

Note: If cancelable is false, then this method will fail.

If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_OBJECT_STATE: Operation cannot be canceled.

9.37.3 waitForCompletion
void IProgress::waitForCompletion(

[in] long timeout)

Waits until the task is done (including all sub-operations) with a given timeout in
milliseconds; specify -1 for an indefinite wait.

If this method fails, the following error codes may be reported:

• VBOX_E_IPRT_ERROR: Failed to wait for task completion.

168

9 Classes (interfaces)

9.37.4 waitForOperationCompletion
void IProgress::waitForOperationCompletion(

[in] unsigned long operation,
[in] long timeout)

Waits until the given operation is done with a given timeout in milliseconds; specify
-1 for an indefinite wait.

If this method fails, the following error codes may be reported:

• VBOX_E_IPRT_ERROR: Failed to wait for operation completion.

9.38 IRemoteDisplayInfo

Note: With the web service, this interface is mapped to a structure. Attributes
that return this interface will not return an object, but a complete structure
containing the attributes listed below as structure members.

Contains information about the remote display (VRDP) capabilities and status. This
is used in the IConsole::remoteDisplayInfo attribute.

9.38.1 Attributes

9.38.1.1 active (read-only)

boolean IRemoteDisplayInfo::active

Whether the remote display connection is active.

9.38.1.2 numberOfClients (read-only)

unsigned long IRemoteDisplayInfo::numberOfClients

How many times a client connected.

9.38.1.3 beginTime (read-only)

long long IRemoteDisplayInfo::beginTime

When the last connection was established, in milliseconds since 1970-01-01 UTC.

9.38.1.4 endTime (read-only)

long long IRemoteDisplayInfo::endTime

When the last connection was terminated or the current time, if connection is still
active, in milliseconds since 1970-01-01 UTC.

169

9 Classes (interfaces)

9.38.1.5 bytesSent (read-only)

unsigned long long IRemoteDisplayInfo::bytesSent

How many bytes were sent in last or current, if still active, connection.

9.38.1.6 bytesSentTotal (read-only)

unsigned long long IRemoteDisplayInfo::bytesSentTotal

How many bytes were sent in all connections.

9.38.1.7 bytesReceived (read-only)

unsigned long long IRemoteDisplayInfo::bytesReceived

How many bytes were received in last or current, if still active, connection.

9.38.1.8 bytesReceivedTotal (read-only)

unsigned long long IRemoteDisplayInfo::bytesReceivedTotal

How many bytes were received in all connections.

9.38.1.9 user (read-only)

wstring IRemoteDisplayInfo::user

Login user name supplied by the client.

9.38.1.10 domain (read-only)

wstring IRemoteDisplayInfo::domain

Login domain name supplied by the client.

9.38.1.11 clientName (read-only)

wstring IRemoteDisplayInfo::clientName

The client name supplied by the client.

9.38.1.12 clientIP (read-only)

wstring IRemoteDisplayInfo::clientIP

The IP address of the client.

170

9 Classes (interfaces)

9.38.1.13 clientVersion (read-only)

unsigned long IRemoteDisplayInfo::clientVersion

The client software version number.

9.38.1.14 encryptionStyle (read-only)

unsigned long IRemoteDisplayInfo::encryptionStyle

Public key exchange method used when connection was established. Values: 0 -
RDP4 public key exchange scheme. 1 - X509 certificates were sent to client.

9.39 ISerialPort

The ISerialPort interface represents the virtual serial port device.
The virtual serial port device acts like an ordinary serial port inside the virtual ma-

chine. This device communicates to the real serial port hardware in one of two modes:
host pipe or host device.

In host pipe mode, the #path attribute specifies the path to the pipe on the host
computer that represents a serial port. The #server attribute determines if this pipe
is created by the virtual machine process at machine startup or it must already exist
before starting machine execution.

In host device mode, the #path attribute specifies the name of the serial port device
on the host computer.

There is also a third communication mode: the disconnected mode. In this mode,
the guest OS running inside the virtual machine will be able to detect the serial port,
but all port write operations will be discarded and all port read operations will return
no data.

See also: IMachine::getSerialPort

9.39.1 Attributes

9.39.1.1 slot (read-only)

unsigned long ISerialPort::slot

Slot number this serial port is plugged into. Corresponds to the value you pass to
IMachine::getSerialPort() to obtain this instance.

9.39.1.2 enabled (read/write)

boolean ISerialPort::enabled

Flag whether the serial port is enabled. If disabled, the serial port will not be re-
ported to the guest OS.

171

9 Classes (interfaces)

9.39.1.3 IOBase (read/write)

unsigned long ISerialPort::IOBase

Base I/O address of the serial port.

9.39.1.4 IRQ (read/write)

unsigned long ISerialPort::IRQ

IRQ number of the serial port.

9.39.1.5 hostMode (read/write)

PortMode ISerialPort::hostMode

How is this port connected to the host.

Note: Changing this attribute may fail if the conditions for path are not met.

9.39.1.6 server (read/write)

boolean ISerialPort::server

Flag whether this serial port acts as a server (creates a new pipe on the host) or
as a client (uses the existing pipe). This attribute is used only when hostMode is
PortMode_HostPipe.

9.39.1.7 path (read/write)

wstring ISerialPort::path

Path to the serial port’s pipe on the host when hostMode is PortMode_HostPipe, or
the host serial device name when hostMode is PortMode_HostDevice. For both cases,
setting a null or empty string as the attribute’s value is an error. Otherwise, the value
of this property is ignored.

9.40 ISession

The ISession interface represents a serialization primitive for virtual machines.
With VirtualBox, every time one wishes to manipulate a virtual machine (e.g.

change its settings or start execution), a session object is required. Such an object
must be passed to one of the session methods that open the given session, which then
initiates the machine manipulation.

172

9 Classes (interfaces)

A session serves several purposes: it identifies to the inter-process VirtualBox code
which process is currently working with the virtual machine, and it ensures that there
are no incompatible requests from several processes for the same virtual machine.
Session objects can therefore be thought of as mutex semaphores that lock virtual
machines to prevent conflicting accesses from several processes.

How sessions objects are used depends on whether you use the Main API via COM
or via the webservice:

• When using the COM API directly, an object of the Session class from the
VirtualBox type library needs to be created. In regular COM C++ client code,
this can be done by calling createLocalObject(), a standard COM API. This
object will then act as a local session object in further calls to open a session.

• In the webservice, the session manager (IWebsessionManager) instead creates
one session object automatically when IWebsessionManager::logon() is called.
A managed object reference to that session object can be retrieved by calling
IWebsessionManager::getSessionObject(). This session object reference can then
be used to open sessions.

Sessions are mainly used in two variations:

• To start a virtual machine in a separate process, one would call IVirtual-
Box::openRemoteSession(), which requires a session object as its first parameter.
This session then identifies the caller and lets him control the started machine
(for example, pause machine execution or power it down) as well as be notified
about machine execution state changes.

• To alter machine settings, or to start machine execution within the current pro-
cess, one needs to open a direct session for the machine first by calling IVirtual-
Box::openSession(). While a direct session is open within one process, no any
other process may open another direct session for the same machine. This pre-
vents the machine from being changed by other processes while it is running or
while the machine is being configured.

One also can attach to an existing direct session already opened by another process
(for example, in order to send a control request to the virtual machine such as the
pause or the reset request). This is done by calling IVirtualBox::openExistingSession().

Note: Unless you are trying to write a new VirtualBox front-end that
performs direct machine execution (like the VirtualBox or VBoxSDL front-
ends), don’t call IConsole::powerUp() in a direct session opened by IVirtual-
Box::openSession() and use this session only to change virtual machine set-
tings. If you simply want to start virtual machine execution using one of the
existing front-ends (for example the VirtualBox GUI or headless server), sim-
ply use IVirtualBox::openRemoteSession(); these front-ends will power up the
machine automatically for you.

173

9 Classes (interfaces)

9.40.1 Attributes

9.40.1.1 state (read-only)

SessionState ISession::state

Current state of this session.

9.40.1.2 type (read-only)

SessionType ISession::type

Type of this session. The value of this attribute is valid only if the session is currently
open (i.e. its #state is SessionType_SessionOpen), otherwise an error will be returned.

9.40.1.3 machine (read-only)

IMachine ISession::machine

Machine object associated with this session.

9.40.1.4 console (read-only)

IConsole ISession::console

Console object associated with this session.

9.40.2 close
void ISession::close()

Closes a session that was previously opened.
It is recommended that every time an “open session” method (such as IVirtual-

Box::openRemoteSession() or IVirtualBox::openSession()) has been called to manip-
ulate a virtual machine, the caller invoke ISession::close() when it’s done doing so.
Since sessions are serialization primitives much like ordinary mutexes, they are best
used the same way: for each “open” call, there should be a matching “close” call, even
when errors occur.

Otherwise, if a direct session for a machine opened with IVirtualBox::openSession()
is not explicitly closed when the application terminates, the state of the machine will
be set to :: on the server.

Generally, it is recommended to close all open sessions explicitly before terminating
the application (regardless of the reason for the termination).

174

9 Classes (interfaces)

Note: Do not expect the session state (state to return to “Closed” immediately
after you invoke ISession::close(), particularly if you have started a remote
session to execute the VM in a new process. The session state will automat-
ically return to “Closed” once the VM is no longer executing, which can of
course take a very long time.

If this method fails, the following error codes may be reported:

• E_UNEXPECTED: Session is not open.

9.41 ISharedFolder

Note: With the web service, this interface is mapped to a structure. Attributes
that return this interface will not return an object, but a complete structure
containing the attributes listed below as structure members.

The ISharedFolder interface represents a folder in the host computer’s file system
accessible from the guest OS running inside a virtual machine using an associated
logical name.

There are three types of shared folders:

• Global (IVirtualBox::sharedFolders[]), shared folders available to all virtual ma-
chines.

• Permanent (IMachine::sharedFolders[]), VM-specific shared folders available to
the given virtual machine at startup.

• Transient (IConsole::sharedFolders[]), VM-specific shared folders created in the
session context (for example, when the virtual machine is running) and auto-
matically discarded when the session is closed (the VM is powered off).

Logical names of shared folders must be unique within the given scope (global,
permanent or transient). However, they do not need to be unique across scopes. In
this case, the definition of the shared folder in a more specific scope takes precedence
over definitions in all other scopes. The order of precedence is (more specific to more
general):

1. Transient definitions

2. Permanent definitions

3. Global definitions

175

9 Classes (interfaces)

For example, if MyMachine has a shared folder named C_DRIVE (that points
to C:\\), then creating a transient shared folder named C_DRIVE (that points to
C:\\\\WINDOWS) will change the definition of C_DRIVE in the guest OS so that
\\\\VBOXSVR\\C_DRIVE will give access to C:\\WINDOWS instead of C:\\ on the
host PC. Removing the transient shared folder C_DRIVE will restore the previous (per-
manent) definition of C_DRIVE that points to C:\\ if it still exists.

Note that permanent and transient shared folders of different machines are in differ-
ent name spaces, so they don’t overlap and don’t need to have unique logical names.

Note: Global shared folders are not implemented in the current version of the
product.

9.41.1 Attributes

9.41.1.1 name (read-only)

wstring ISharedFolder::name

Logical name of the shared folder.

9.41.1.2 hostPath (read-only)

wstring ISharedFolder::hostPath

Full path to the shared folder in the host file system.

9.41.1.3 accessible (read-only)

boolean ISharedFolder::accessible

Whether the folder defined by the host path is currently accessible or not. For ex-
ample, the folder can be unaccessible if it is placed on the network share that is not
available by the time this property is read.

9.41.1.4 writable (read-only)

boolean ISharedFolder::writable

Whether the folder defined by the host path is writable or not.

176

9 Classes (interfaces)

9.41.1.5 lastAccessError (read-only)

wstring ISharedFolder::lastAccessError

Text message that represents the result of the last accessibility check.
Accessibility checks are performed each time the accessible attribute is read. A

null string is returned if the last accessibility check was successful. A non-null string
indicates a failure and should normally describe a reason of the failure (for example,
a file read error).

9.42 ISnapshot

The ISnapshot interface represents a snapshot of the virtual machine.
The snapshot stores all the information about a virtual machine necessary to bring

it to exactly the same state as it was at the time of taking the snapshot. The snapshot
includes:

• all settings of the virtual machine (i.e. its hardware configuration: RAM size,
attached hard disks, etc.)

• the execution state of the virtual machine (memory contents, CPU state, etc.).

Snapshots can be offline (taken when the VM is powered off) or online (taken when
the VM is running). The execution state of the offline snapshot is called a zero execution
state (it doesn’t actually contain any information about memory contents or the CPU
state, assuming that all hardware is just powered off).

Snapshot branches
Snapshots can be chained. Chained snapshots form a branch where every next

snapshot is based on the previous one. This chaining is mostly related to hard disk
branching (see IHardDisk description). This means that every time a new snapshot
is created, a new differencing hard disk is implicitly created for all normal hard disks
attached to the given virtual machine. This allows to fully restore hard disk contents
when the machine is later reverted to a particular snapshot.

In the current implementation, multiple snapshot branches within one vir-
tual machine are not allowed. Every machine has a single branch, and ICon-
sole::takeSnapshot() operation adds a new snapshot to the top of that branch.

Existing snapshots can be discarded using IConsole::discardSnapshot().
Current snapshot
Every virtual machine has a current snapshot, identified by IMachine::currentSnapshot.

This snapshot is used as a base for the current machine state (see below), to the effect
that all normal hard disks of the machine and its execution state are based on this
snapshot.

In the current implementation, the current snapshot is always the last taken snap-
shot (i.e. the head snapshot on the branch) and it cannot be changed.

177

9 Classes (interfaces)

The current snapshot is null if the machine doesn’t have snapshots at all; in this
case the current machine state is just current settings of this machine plus its current
execution state.

Current machine state
The current machine state is what represented by IMachine instances got directly

from IVirtualBox using getMachine(), findMachine(), etc. (as opposed to instances
returned by machine). This state is always used when the machine is powered on.

The current machine state also includes the current execution state. If the machine
is being currently executed (IMachine::state is :: and above), its execution state is just
what’s happening now. If it is powered off (:: or ::), it has a zero execution state. If
the machine is saved (::), its execution state is what saved in the execution state file
(IMachine::stateFilePath).

If the machine is in the saved state, then, next time it is powered on, its execution
state will be fully restored from the saved state file and the execution will continue
from the point where the state was saved.

Similarly to snapshots, the current machine state can be discarded using ICon-
sole::discardCurrentState().

Taking and discarding snapshots
The table below briefly explains the meaning of every snapshot operation:
OperationMeaningRemarksIConsole::takeSnapshot()Save the current state of the

virtual machine, including all settings, contents of normal hard disks and the cur-
rent modifications to immutable hard disks (for online snapshots)The current state is
not changed (the machine will continue execution if it is being executed when the
snapshot is taken)IConsole::discardSnapshot()Forget the state of the virtual machine
stored in the snapshot: dismiss all saved settings and delete the saved execution state
(for online snapshots)Other snapshots (including child snapshots, if any) and the cur-
rent state are not directly affectedIConsole::discardCurrentState()Restore the current
state of the virtual machine from the state stored in the current snapshot, includ-
ing all settings and hard disk contentsThe current state of the machine existed prior
to this operation is lostIConsole::discardCurrentSnapshotAndState()Completely revert
the virtual machine to the state it was in before the current snapshot has been taken-
The current state, as well as the current snapshot, are lost

9.42.1 Attributes

9.42.1.1 id (read-only)

uuid ISnapshot::id

UUID of the snapshot.

9.42.1.2 name (read/write)

wstring ISnapshot::name

Short name of the snapshot.

178

9 Classes (interfaces)

9.42.1.3 description (read/write)

wstring ISnapshot::description

Optional description of the snapshot.

9.42.1.4 timeStamp (read-only)

long long ISnapshot::timeStamp

Time stamp of the snapshot, in milliseconds since 1970-01-01 UTC.

9.42.1.5 online (read-only)

boolean ISnapshot::online

true if this snapshot is an online snapshot and false otherwise.

Note: When this attribute is true, the IMachine::stateFilePath attribute of
the machine object associated with this snapshot will point to the saved state
file. Otherwise, it will be null.

9.42.1.6 machine (read-only)

IMachine ISnapshot::machine

Virtual machine this snapshot is taken on. This object stores all settings the machine
had when taking this snapshot.

Note: The returned machine object is immutable, i.e. no any settings can be
changed.

9.42.1.7 parent (read-only)

ISnapshot ISnapshot::parent

Parent snapshot (a snapshot this one is based on).

Note: It’s not an error to read this attribute on a snapshot that doesn’t have a
parent – a null object will be returned to indicate this.

179

9 Classes (interfaces)

9.42.1.8 children (read-only)

ISnapshot ISnapshot::children[]

Child snapshots (all snapshots having this one as a parent).

Note: In the current implementation, there can be only one child snapshot,
or no children at all, meaning this is the last (head) snapshot.

9.43 IStorageController

Represents a storage controller that is attached to a virtual machine (IMachine). Just
as hard disks are attached to storage controllers in a real computer, virtual hard disks
(represented by IHardDisk) are attached to virtual storage controllers, represented by
this interface.

VirtualBox supports three types of virtual storage controller hardware: IDE, SCSI,
and SATA (see bus). Depending on which of these three is used, certain sub-types are
available and can be selected in controllerType.

9.43.1 Attributes

9.43.1.1 name (read-only)

wstring IStorageController::name

Name of the storage controller, as originally specified with IMachine::addStorageController().
This then uniquely identifies this controller with other method calls such as IMa-
chine::attachHardDisk().

9.43.1.2 maxDevicesPerPortCount (read-only)

unsigned long IStorageController::maxDevicesPerPortCount

Maximum number of devices which can be attached to one port.

9.43.1.3 minPortCount (read-only)

unsigned long IStorageController::minPortCount

Minimum number of ports that portCount can be set to.

9.43.1.4 maxPortCount (read-only)

unsigned long IStorageController::maxPortCount

Maximum number of ports that portCount can be set to.

180

9 Classes (interfaces)

9.43.1.5 instance (read/write)

unsigned long IStorageController::instance

The instance number of the device in the running VM.

9.43.1.6 portCount (read/write)

unsigned long IStorageController::portCount

The number of currently usable ports on the controller. The minimum and maximum
number of ports for one controller are stored in minPortCount and maxPortCount.

9.43.1.7 bus (read-only)

StorageBus IStorageController::bus

The connection type of the storage controller.

9.43.1.8 controllerType (read/write)

StorageControllerType IStorageController::controllerType

Type of the virtual storage controller. Depending on this value, VirtualBox will pro-
vide a different virtual storage controller hardware to the guest.

For SCSI controllers, the default type is LsiLogic.

9.43.2 GetIDEEmulationPort
long IStorageController::GetIDEEmulationPort(

[in] long devicePosition)

Gets the corresponding port number which is emulated as an IDE device.
If this method fails, the following error codes may be reported:

• E_INVALIDARG: The devicePosition is not in the range 0 to 3.

• E_NOTIMPL: The storage controller type is not SATAIntelAhci.

9.43.3 SetIDEEmulationPort
void IStorageController::SetIDEEmulationPort(

[in] long devicePosition,
[in] long portNumber)

Sets the port number which is emulated as an IDE device.
If this method fails, the following error codes may be reported:

• E_INVALIDARG: The devicePosition is not in the range 0 to 3 or the
portNumber is not in the range 0 to 29.

• E_NOTIMPL: The storage controller type is not SATAIntelAhci.

181

9 Classes (interfaces)

9.44 ISystemProperties

The ISystemProperties interface represents global properties of the given VirtualBox
installation.

These properties define limits and default values for various attributes and parame-
ters. Most of the properties are read-only, but some can be changed by a user.

9.44.1 Attributes

9.44.1.1 minGuestRAM (read-only)

unsigned long ISystemProperties::minGuestRAM

Minimum guest system memory in Megabytes.

9.44.1.2 maxGuestRAM (read-only)

unsigned long ISystemProperties::maxGuestRAM

Maximum guest system memory in Megabytes.

9.44.1.3 minGuestVRAM (read-only)

unsigned long ISystemProperties::minGuestVRAM

Minimum guest video memory in Megabytes.

9.44.1.4 maxGuestVRAM (read-only)

unsigned long ISystemProperties::maxGuestVRAM

Maximum guest video memory in Megabytes.

9.44.1.5 minGuestCPUCount (read-only)

unsigned long ISystemProperties::minGuestCPUCount

Minimum CPU count.

9.44.1.6 maxGuestCPUCount (read-only)

unsigned long ISystemProperties::maxGuestCPUCount

Maximum CPU count.

182

9 Classes (interfaces)

9.44.1.7 maxVDISize (read-only)

unsigned long long ISystemProperties::maxVDISize

Maximum size of a virtual disk image in Megabytes.

9.44.1.8 networkAdapterCount (read-only)

unsigned long ISystemProperties::networkAdapterCount

Number of network adapters associated with every IMachine instance.

9.44.1.9 serialPortCount (read-only)

unsigned long ISystemProperties::serialPortCount

Number of serial ports associated with every IMachine instance.

9.44.1.10 parallelPortCount (read-only)

unsigned long ISystemProperties::parallelPortCount

Number of parallel ports associated with every IMachine instance.

9.44.1.11 maxBootPosition (read-only)

unsigned long ISystemProperties::maxBootPosition

Maximum device position in the boot order. This value corresponds to the total
number of devices a machine can boot from, to make it possible to include all possible
devices to the boot list. See also: IMachine::setBootOrder()

9.44.1.12 defaultMachineFolder (read/write)

wstring ISystemProperties::defaultMachineFolder

Full path to the default directory used to create new or open existing machines when
a settings file name contains no path.

The initial value of this property is <VirtualBox_home>/Machines.

Note: Setting this property to null will restore the initial value.

Note: When settings this property, the specified path can be absolute (full
path) or relative to the VirtualBox home directory. When reading this prop-
erty, a full path is always returned.

183

9 Classes (interfaces)

Note: The specified path may not exist, it will be created when necessary.

See also: IVirtualBox::createMachine(), IVirtualBox::openMachine()

9.44.1.13 defaultHardDiskFolder (read/write)

wstring ISystemProperties::defaultHardDiskFolder

Full path to the default directory used to create new or open existing virtual disks.
This path is used when the storage unit of a hard disk is a regular file in the host’s

file system and only a file name that contains no path is given.
The initial value of this property is <VirtualBox_home>/HardDisks.

Note: Setting this property to null will restore the initial value.

Note: When settings this property, the specified path can be relative to the
VirtualBox home directory or absolute. When reading this property, a full
path is always returned.

Note: The specified path may not exist, it will be created when necessary.

See also: IHardDisk, IVirtualBox::createHardDisk(), IVirtualBox::openHardDisk(),
IMedium::location

9.44.1.14 hardDiskFormats (read-only)

IHardDiskFormat ISystemProperties::hardDiskFormats[]

List of all hard disk storage formats supported by this VirtualBox installation.
Keep in mind that the hard disk format identifier (IHardDiskFormat::id) used in

other API calls like IVirtualBox::createHardDisk() to refer to a particular hard disk
format is a case-insensitive string. This means that, for example, all of the following
strings:

"VDI"
"vdi"
"VdI"

refer to the same hard disk format.
Note that the virtual hard disk framework is backend-based, therefore the list of

supported formats depends on what backends are currently installed.
See also: IHardDiskFormat,

184

9 Classes (interfaces)

9.44.1.15 defaultHardDiskFormat (read/write)

wstring ISystemProperties::defaultHardDiskFormat

Identifier of the default hard disk format used by VirtualBox.
The hard disk format set by this attribute is used by VirtualBox when the hard disk

format was not specified explicitly. One example is IVirtualBox::createHardDisk() with
the null format argument. A more complex example is implicit creation of differenc-
ing hard disks when taking a snapshot of a virtual machine: this operation will try to
use a format of the parent hard disk first and if this format does not support differenc-
ing hard disks the default format specified by this argument will be used.

The list of supported hard disk formats may be obtained by the hardDiskFormats[]
call. Note that the default hard disk format must have a capability to create differenc-
ing hard disks; otherwise opeartions that create hard disks implicitly may fail unex-
pectedly.

The initial value of this property is VDI in the current version of the VirtualBox
product, but may change in the future.

Note: Setting this property to null will restore the initial value.

See also: hardDiskFormats[], IHardDiskFormat::id, IVirtualBox::createHardDisk()

9.44.1.16 remoteDisplayAuthLibrary (read/write)

wstring ISystemProperties::remoteDisplayAuthLibrary

Library that provides authentication for VRDP clients. The library is used if a virtual
machine’s authentication type is set to “external” in the VM RemoteDisplay configura-
tion.

The system library extension (“.DLL” or “.so”) must be omitted. A full path can be
specified; if not, then the library must reside on the system’s default library path.

The default value of this property is VRDPAuth. There is a library of that name in
one of the default VirtualBox library directories.

For details about VirtualBox authentication libraries and how to implement them,
please refer to the VirtualBox manual.

Note: Setting this property to null will restore the initial value.

9.44.1.17 webServiceAuthLibrary (read/write)

wstring ISystemProperties::webServiceAuthLibrary

185

9 Classes (interfaces)

Library that provides authentication for webservice clients. The library is used if
a virtual machine’s authentication type is set to “external” in the VM RemoteDisplay
configuration and will be called from within the IWebsessionManager::logon() imple-
mentation.

As opposed to remoteDisplayAuthLibrary, there is no per-VM setting for this, as the
webservice is a global resource (if it is running). Only for this setting (for the web-
service), setting this value to a literal “null” string disables authentication, meaning
that IWebsessionManager::logon() will always succeed, no matter what user name
and password are supplied.

The initial value of this property is VRDPAuth, meaning that the webservice will
use the same authentication library that is used by default for VBoxVRDP (again, see
remoteDisplayAuthLibrary). The format and calling convention of authentication li-
braries is the same for the webservice as it is for VBoxVRDP.

9.44.1.18 HWVirtExEnabled (read/write)

boolean ISystemProperties::HWVirtExEnabled

This specifies the default value for hardware virtualization extensions. If enabled,
virtual machines will make use of hardware virtualization extensions such as Intel
VT-x and AMD-V by default. This value can be overridden by each VM using their
IMachine::HWVirtExEnabled property.

9.44.1.19 LogHistoryCount (read/write)

unsigned long ISystemProperties::LogHistoryCount

This value specifies how many old release log files are kept.

9.45 IUSBController

9.45.1 Attributes

9.45.1.1 enabled (read/write)

boolean IUSBController::enabled

Flag whether the USB controller is present in the guest system. If disabled, the
virtual guest hardware will not contain any USB controller. Can only be changed
when the VM is powered off.

9.45.1.2 enabledEhci (read/write)

boolean IUSBController::enabledEhci

Flag whether the USB EHCI controller is present in the guest system. If disabled, the
virtual guest hardware will not contain a USB EHCI controller. Can only be changed
when the VM is powered off.

186

9 Classes (interfaces)

9.45.1.3 USBStandard (read-only)

unsigned short IUSBController::USBStandard

USB standard version which the controller implements. This is a BCD which means
that the major version is in the high byte and minor version is in the low byte.

9.45.1.4 deviceFilters (read-only)

IUSBDeviceFilter IUSBController::deviceFilters[]

List of USB device filters associated with the machine.
If the machine is currently running, these filters are activated every time a new

(supported) USB device is attached to the host computer that was not ignored by
global filters (IHost::USBDeviceFilters[]).

These filters are also activated when the machine is powered up. They are run
against a list of all currently available USB devices (in states ::, ::, ::) that were not
previously ignored by global filters.

If at least one filter matches the USB device in question, this device is automatically
captured (attached to) the virtual USB controller of this machine.

See also: IUSBDeviceFilter, ::IUSBController

9.45.2 createDeviceFilter
IUSBDeviceFilter IUSBController::createDeviceFilter(

[in] wstring name)

Creates a new USB device filter. All attributes except the filter name are set to null
(any match), active is false (the filter is not active).

The created filter can then be added to the list of filters using insertDeviceFilter().
See also: #deviceFilters
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: The virtual machine is not mutable.

9.45.3 insertDeviceFilter
void IUSBController::insertDeviceFilter(

[in] unsigned long position,
[in] IUSBDeviceFilter filter)

Inserts the given USB device to the specified position in the list of filters.
Positions are numbered starting from 0. If the specified position is equal to or greater

than the number of elements in the list, the filter is added to the end of the collection.

Note: Duplicates are not allowed, so an attempt to insert a filter that is al-
ready in the collection, will return an error.

187

9 Classes (interfaces)

See also: #deviceFilters
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.

• E_INVALIDARG: USB device filter not created within this VirtualBox instance.

• VBOX_E_INVALID_OBJECT_STATE: USB device filter already in list.

9.45.4 removeDeviceFilter
IUSBDeviceFilter IUSBController::removeDeviceFilter(

[in] unsigned long position)

Removes a USB device filter from the specified position in the list of filters.
Positions are numbered starting from 0. Specifying a position equal to or greater

than the number of elements in the list will produce an error.
See also: #deviceFilters
If this method fails, the following error codes may be reported:

• VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.

• E_INVALIDARG: USB device filter list empty or invalid position.

9.46 IUSBDevice

The IUSBDevice interface represents a virtual USB device attached to the virtual ma-
chine.

A collection of objects implementing this interface is stored in the ICon-
sole::USBDevices[] attribute which lists all USB devices attached to a running virtual
machine’s USB controller.

9.46.1 Attributes

9.46.1.1 id (read-only)

uuid IUSBDevice::id

Unique USB device ID. This ID is built from #vendorId, #productId, #revision and
#serialNumber.

9.46.1.2 vendorId (read-only)

unsigned short IUSBDevice::vendorId

Vendor ID.

188

9 Classes (interfaces)

9.46.1.3 productId (read-only)

unsigned short IUSBDevice::productId

Product ID.

9.46.1.4 revision (read-only)

unsigned short IUSBDevice::revision

Product revision number. This is a packed BCD represented as unsigned short. The
high byte is the integer part and the low byte is the decimal.

9.46.1.5 manufacturer (read-only)

wstring IUSBDevice::manufacturer

Manufacturer string.

9.46.1.6 product (read-only)

wstring IUSBDevice::product

Product string.

9.46.1.7 serialNumber (read-only)

wstring IUSBDevice::serialNumber

Serial number string.

9.46.1.8 address (read-only)

wstring IUSBDevice::address

Host specific address of the device.

9.46.1.9 port (read-only)

unsigned short IUSBDevice::port

Host USB port number the device is physically connected to.

9.46.1.10 version (read-only)

unsigned short IUSBDevice::version

The major USB version of the device - 1 or 2.

189

9 Classes (interfaces)

9.46.1.11 portVersion (read-only)

unsigned short IUSBDevice::portVersion

The major USB version of the host USB port the device is physically connected to
- 1 or 2. For devices not connected to anything this will have the same value as the
version attribute.

9.46.1.12 remote (read-only)

boolean IUSBDevice::remote

Whether the device is physically connected to a remote VRDP client or to a local
host machine.

9.47 IUSBDeviceFilter

The IUSBDeviceFilter interface represents an USB device filter used to perform actions
on a group of USB devices.

This type of filters is used by running virtual machines to automatically capture
selected USB devices once they are physically attached to the host computer.

A USB device is matched to the given device filter if and only if all attributes of the
device match the corresponding attributes of the filter (that is, attributes are joined
together using the logical AND operation). On the other hand, all together, filters in
the list of filters carry the semantics of the logical OR operation. So if it is desirable to
create a match like “this vendor id OR this product id”, one needs to create two filters
and specify “any match” (see below) for unused attributes.

All filter attributes used for matching are strings. Each string is an expression repre-
senting a set of values of the corresponding device attribute, that will match the given
filter. Currently, the following filtering expressions are supported:

• Interval filters. Used to specify valid intervals for integer device attributes (Ven-
dor ID, Product ID and Revision). The format of the string is:

int:((m)|([m]-[n]))(,(m)|([m]-[n]))*

where m and n are integer numbers, either in octal (starting from 0), hexadec-
imal (starting from 0x) or decimal (otherwise) form, so that m < n. If m is
omitted before a dash (-), the minimum possible integer is assumed; if n is
omitted after a dash, the maximum possible integer is assumed.

• Boolean filters. Used to specify acceptable values for boolean device attributes.
The format of the string is:

true|false|yes|no|0|1

190

9 Classes (interfaces)

• Exact match. Used to specify a single value for the given device attribute. Any
string that doesn’t start with int: represents the exact match. String device at-
tributes are compared to this string including case of symbols. Integer attributes
are first converted to a string (see individual filter attributes) and then compared
ignoring case.

• Any match. Any value of the corresponding device attribute will match the given
filter. An empty or null string is used to construct this type of filtering expres-
sions.

Note: On the Windows host platform, interval filters are not currently avail-
able. Also all string filter attributes (manufacturer, product, serialNumber)
are ignored, so they behave as any match no matter what string expression is
specified.

See also: IUSBController::deviceFilters, IHostUSBDeviceFilter

9.47.1 Attributes

9.47.1.1 name (read/write)

wstring IUSBDeviceFilter::name

Visible name for this filter. This name is used to visually distinguish one filter from
another, so it can neither be null nor an empty string.

9.47.1.2 active (read/write)

boolean IUSBDeviceFilter::active

Whether this filter active or has been temporarily disabled.

9.47.1.3 vendorId (read/write)

wstring IUSBDeviceFilter::vendorId

Vendor ID filter. The string representation for the exact matching has the form XXXX,
where X is the hex digit (including leading zeroes).

9.47.1.4 productId (read/write)

wstring IUSBDeviceFilter::productId

Product ID filter. The string representation for the exact matching has the form
XXXX, where X is the hex digit (including leading zeroes).

191

9 Classes (interfaces)

9.47.1.5 revision (read/write)

wstring IUSBDeviceFilter::revision

Product revision number filter. The string representation for the exact matching has
the form IIFF, where I is the decimal digit of the integer part of the revision, and F
is the decimal digit of its fractional part (including leading and trailing zeros). Note
that for interval filters, it’s best to use the hexadecimal form, because the revision is
stored as a 16 bit packed BCD value; so the expression int:0x0100-0x0199 will
match any revision from 1.0 to 1.99.

9.47.1.6 manufacturer (read/write)

wstring IUSBDeviceFilter::manufacturer

Manufacturer filter.

9.47.1.7 product (read/write)

wstring IUSBDeviceFilter::product

Product filter.

9.47.1.8 serialNumber (read/write)

wstring IUSBDeviceFilter::serialNumber

Serial number filter.

9.47.1.9 port (read/write)

wstring IUSBDeviceFilter::port

Host USB port filter.

9.47.1.10 remote (read/write)

wstring IUSBDeviceFilter::remote

Remote state filter.

Note: This filter makes sense only for machine USB filters, i.e. it is ignored
by IHostUSBDeviceFilter objects.

192

9 Classes (interfaces)

9.47.1.11 maskedInterfaces (read/write)

unsigned long IUSBDeviceFilter::maskedInterfaces

This is an advanced option for hiding one or more USB interfaces from the guest.
The value is a bit mask where the bits that are set means the corresponding USB
interface should be hidden, masked off if you like. This feature only works on Linux
hosts.

9.48 IVRDPServer

9.48.1 Attributes

9.48.1.1 enabled (read/write)

boolean IVRDPServer::enabled

VRDP server status.

9.48.1.2 port (read/write)

unsigned long IVRDPServer::port

VRDP server port number.

Note: Setting the value of this property to 0 will reset the port number to
the default value which is currently 3389. Reading this property will always
return a real port number, even after it has been set to 0 (in which case the
default port is returned).

9.48.1.3 netAddress (read/write)

wstring IVRDPServer::netAddress

VRDP server address.

9.48.1.4 authType (read/write)

VRDPAuthType IVRDPServer::authType

VRDP authentication method.

9.48.1.5 authTimeout (read/write)

unsigned long IVRDPServer::authTimeout

Timeout for guest authentication. Milliseconds.

193

9 Classes (interfaces)

9.48.1.6 allowMultiConnection (read/write)

boolean IVRDPServer::allowMultiConnection

Flag whether multiple simultaneous connections to the VM are permitted. Note that
this will be replaced by a more powerful mechanism in the future.

9.48.1.7 reuseSingleConnection (read/write)

boolean IVRDPServer::reuseSingleConnection

Flag whether the existing connection must be dropped and a new connection must
be established by the VRDP server, when a new client connects in single connection
mode.

9.49 IVirtualBox

The IVirtualBox interface represents the main interface exposed by the product that
provides virtual machine management.

An instance of IVirtualBox is required for the product to do anything useful. Even
though the interface does not expose this, internally, IVirtualBox is implemented as
a singleton and actually lives in the process of the VirtualBox server (VBoxSVC.exe).
This makes sure that IVirtualBox can track the state of all virtual machines on a par-
ticular host, regardless of which frontend started them.

To enumerate all the virtual machines on the host, use the machines[] attribute.

9.49.1 Attributes

9.49.1.1 version (read-only)

wstring IVirtualBox::version

A string representing the version number of the product. The format is 3 integer
numbers divided by dots (e.g. 1.0.1). The last number represents the build number
and will frequently change.

9.49.1.2 revision (read-only)

unsigned long IVirtualBox::revision

The internal build revision number of the product.

194

9 Classes (interfaces)

9.49.1.3 packageType (read-only)

wstring IVirtualBox::packageType

A string representing the package type of this product. The format is
OS_ARCH_DIST where OS is either WINDOWS, LINUX, SOLARIS, DARWIN. ARCH is
either 32BITS or 64BITS. DIST is either GENERIC, UBUNTU_606, UBUNTU_710, or
something like this.

9.49.1.4 homeFolder (read-only)

wstring IVirtualBox::homeFolder

Full path to the directory where the global settings file, VirtualBox.xml, is
stored.

In this version of VirtualBox, the value of this property is always <user_dir>/.VirtualBox
(where <user_dir> is the path to the user directory, as determined by the host OS),
and cannot be changed.

This path is also used as the base to resolve relative paths in places where relative
paths are allowed (unless otherwise expressly indicated).

9.49.1.5 settingsFilePath (read-only)

wstring IVirtualBox::settingsFilePath

Full name of the global settings file. The value of this property corresponds to the
value of homeFolder plus /VirtualBox.xml.

9.49.1.6 settingsFileVersion (read-only)

wstring IVirtualBox::settingsFileVersion

Current version of the format of the global VirtualBox settings file (VirtualBox.xml).
The version string has the following format:

x.y-platform

where x and y are the major and the minor format versions, and platform is the
platform identifier.

The current version usually matches the value of the settingsFormatVersion attribute
unless the settings file was created by an older version of VirtualBox and there was a
change of the settings file format since then.

Note that VirtualBox automatically converts settings files from older versions to the
most recent version when reading them (usually at VirtualBox startup) but it doesn’t
save the changes back until you call a method that implicitly saves settings (such as
setExtraData()) or call saveSettings() explicitly. Therefore, if the value of this attribute

195

9 Classes (interfaces)

differs from the value of settingsFormatVersion, then it means that the settings file was
converted but the result of the conversion is not yet saved to disk.

The above feature may be used by interactive front-ends to inform users about the
settings file format change and offer them to explicitly save all converted settings files
(the global and VM-specific ones), optionally create backup copies of the old settings
files before saving, etc.

See also: settingsFormatVersion, saveSettingsWithBackup()

9.49.1.7 settingsFormatVersion (read-only)

wstring IVirtualBox::settingsFormatVersion

Most recent version of the settings file format.
The version string has the following format:

x.y-platform

where x and y are the major and the minor format versions, and platform is the
platform identifier.

VirtualBox uses this version of the format when saving settings files (either as a
result of method calls that require to save settings or as a result of an explicit call to
saveSettings()).

See also: settingsFileVersion

9.49.1.8 host (read-only)

IHost IVirtualBox::host

Associated host object.

9.49.1.9 systemProperties (read-only)

ISystemProperties IVirtualBox::systemProperties

Associated system information object.

9.49.1.10 machines (read-only)

IMachine IVirtualBox::machines[]

Array of machine objects registered within this VirtualBox instance.

196

9 Classes (interfaces)

9.49.1.11 hardDisks (read-only)

IHardDisk IVirtualBox::hardDisks[]

Array of hard disk objects known to this VirtualBox installation.
This array contains only base (root) hard disks. All differencing hard disks of the

given base hard disk can be enumerated using IHardDisk::children[].

9.49.1.12 DVDImages (read-only)

IDVDImage IVirtualBox::DVDImages[]

Array of CD/DVD image objects registered with this VirtualBox instance.

9.49.1.13 floppyImages (read-only)

IFloppyImage IVirtualBox::floppyImages[]

Array of floppy image objects registered with this VirtualBox instance.

9.49.1.14 progressOperations (read-only)

IProgress IVirtualBox::progressOperations[]

9.49.1.15 guestOSTypes (read-only)

IGuestOSType IVirtualBox::guestOSTypes[]

9.49.1.16 sharedFolders (read-only)

ISharedFolder IVirtualBox::sharedFolders[]

Collection of global shared folders. Global shared folders are available to all virtual
machines.

New shared folders are added to the collection using createSharedFolder(). Existing
shared folders can be removed using removeSharedFolder().

Note: In the current version of the product, global shared folders are not
implemented and therefore this collection is always empty.

9.49.1.17 performanceCollector (read-only)

IPerformanceCollector IVirtualBox::performanceCollector

Associated performance collector object.

197

9 Classes (interfaces)

9.49.1.18 DHCPServers (read-only)

IDHCPServer IVirtualBox::DHCPServers[]

dhcp server settings.

9.49.2 createAppliance
IAppliance IVirtualBox::createAppliance()

Creates a new appliance object, which represents an appliance in the Open Vir-
tual Machine Format (OVF). This can then be used to import an OVF appliance into
VirtualBox or to export machines as an OVF appliance; see the documentation for
IAppliance for details.

9.49.3 createDHCPServer
IDHCPServer IVirtualBox::createDHCPServer(

[in] wstring name)

Creates a dhcp server settings to be used for the given internal network name
If this method fails, the following error codes may be reported:

• E_INVALIDARG: Host network interface name already exists.

9.49.4 createHardDisk
IHardDisk IVirtualBox::createHardDisk(

[in] wstring format,
[in] wstring location)

Creates a new base hard disk object that will use the given storage format and
location for hard disk data.

Note that the actual storage unit is not created by this method. In order to do it, and
before you are able to attach the created hard disk to virtual machines, you must call
one of the following methods to allocate a format-specific storage unit at the specified
location:

• IHardDisk::createBaseStorage()

• IHardDisk::createDiffStorage()

Some hard disk attributes, such as IHardDisk::id, may remain uninitialized until the
hard disk storage unit is successfully created by one of the above methods.

After the storage unit is successfully created, the hard disk gets remembered by this
VirtualBox installation and will be accessible through getHardDisk() and findHard-
Disk() methods. Remembered root (base) hard disks are also returned as part of the
hardDisks[] array. See IHardDisk for more details.

198

9 Classes (interfaces)

The list of all storage formats supported by this VirtualBox installation can
be obtained using ISystemProperties::hardDiskFormats[]. If the format attribute
is empty or null then the default storage format specified by ISystemProper-
ties::defaultHardDiskFormat will be used for creating a storage unit of the hard disk.

Note that the format of the location string is storage format specific. See
IMedium::location, IHardDisk and ISystemProperties::defaultHardDiskFolder for more
details.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: format identifier is invalid. See ISystem-
Properties::hardDiskFormats[].

• VBOX_E_FILE_ERROR: location is a not valid file name (for file-based for-
mats only).

• E_INVALIDARG: format is a null or empty string.

9.49.5 createLegacyMachine
IMachine IVirtualBox::createLegacyMachine(

[in] wstring name,
[in] wstring osTypeId,
[in] wstring settingsFile,
[in] uuid id)

Creates a new virtual machine in “legacy” mode, using the specified settings file to
store machine settings.

As opposed to machines created by createMachine(), the settings file of the machine
created in “legacy” mode is not automatically renamed when the machine name is
changed – it will always remain the same as specified in this method call.

The specified settings file name can be absolute (full path) or relative to the
VirtualBox home directory. If the file name doesn’t contain an extension, the default
extension (.xml) will be appended.

Note that the configuration of the newly created machine is not saved to disk (and
therefore no settings file is created) until IMachine::saveSettings() is called. If the
specified settings file already exists, this method will fail with ::.

See createMachine() for more information.
@deprecated This method may be removed later. Use createMachine() instead.

Note: There is no way to change the name of the settings file of the machine
created in “legacy” mode.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: osTypeId is invalid.

199

9 Classes (interfaces)

• VBOX_E_FILE_ERROR: settingsFile is invalid or the settings file already
exists or could not be created due to an I/O error.

• E_INVALIDARG: name or settingsFile is empty or null.

9.49.6 createMachine
IMachine IVirtualBox::createMachine(

[in] wstring name,
[in] wstring osTypeId,
[in] wstring baseFolder,
[in] uuid id)

Creates a new virtual machine.
The new machine is created unregistered, with the initial configuration set according

to the specified guest OS type. A typical sequence of actions to create a new virtual
machine is as follows:

1. Call this method to have a new machine created. The returned machine object
will be “mutable” allowing to change any machine property.

2. Configure the machine using the appropriate attributes and methods.

3. Call IMachine::saveSettings() to write the settings to the machine’s XML settings
file. The configuration of the newly created machine will not be saved to disk
until this method is called.

4. Call registerMachine() to add the machine to the list of machines known to
VirtualBox.

You should specify valid name for the newly created machine when calling this
method. See the IMachine::name attribute description for more details about the ma-
chine name.

The specified guest OS type identifier must match an ID of one of known guest OS
types listed in the guestOSTypes[] array.

Every machine has a settings file that is used to store the machine configuration. This
file is stored in a directory called the machine settings subfolder. Both the settings sub-
folder and file will have a name that corresponds to the name of the virtual machine.
You can specify where to create the machine setting subfolder using the baseFolder
argument. The base folder can be absolute (full path) or relative to the VirtualBox
home directory.

If baseFolder is a null or empty string (which is recommended), the default ma-
chine settings folder will be used as a base folder for the created machine. Otherwise
the given base folder will be used. In either case, the full path to the resulting settings
file has the following structure:

<base_folder>/<machine_name>/<machine_name>.xml

200

9 Classes (interfaces)

Note that if the resulting settings file already exists, this method will fail with ::.
Optionally, you may specify an UUID of to assign to the created machine. However,

this is not recommended and you should normally pass an empty (null) UUID to this
method so that a new UUID will be automatically generated for every created machine.
You can use UUID 00000000-0000-0000-0000-000000000000 as null value.

Note: There is no way to change the name of the settings file or subfolder of
the created machine directly.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: osTypeId is invalid.

• VBOX_E_FILE_ERROR: Resulting settings file name is invalid or the settings
file already exists or could not be created due to an I/O error.

• E_INVALIDARG: name is empty or null.

9.49.7 createSharedFolder
void IVirtualBox::createSharedFolder(

[in] wstring name,
[in] wstring hostPath,
[in] boolean writable)

Creates a new global shared folder by associating the given logical name with the
given host path, adds it to the collection of shared folders and starts sharing it. Refer
to the description of ISharedFolder to read more about logical names.

Note: In the current implementation, this operation is not implemented.

9.49.8 findDHCPServerByNetworkName
IDHCPServer IVirtualBox::findDHCPServerByNetworkName(

[in] wstring name)

Searches a dhcp server settings to be used for the given internal network name
If this method fails, the following error codes may be reported:

• E_INVALIDARG: Host network interface name already exists.

201

9 Classes (interfaces)

9.49.9 findDVDImage
IDVDImage IVirtualBox::findDVDImage(

[in] wstring location)

Returns a CD/DVD image with the given image location.
The image with the given UUID must be known to this VirtualBox installation, i.e.

it must be previously opened by openDVDImage(), or mounted to some known virtual
machine.

The search is done by comparing the value of the location argument to the
IMedium::location attribute of each known CD/DVD image.

The requested location can be a path relative to the VirtualBox home folder. If only
a file name without any path is given, the default hard disk folder will be prepended to
the file name before searching. Note that on case sensitive file systems, a case sensitive
comparison is performed, otherwise the case in the file path is ignored.

If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Invalid image file location.

• VBOX_E_OBJECT_NOT_FOUND: No matching DVD image found in the media
registry.

9.49.10 findFloppyImage
IFloppyImage IVirtualBox::findFloppyImage(

[in] wstring location)

Returns a floppy image with the given image location.
The image with the given UUID must be known to this VirtualBox installation, i.e. it

must be previously opened by openFloppyImage(), or mounted to some known virtual
machine.

The search is done by comparing the value of the location argument to the
IMedium::location attribute of each known floppy image.

The requested location can be a path relative to the VirtualBox home folder. If only
a file name without any path is given, the default hard disk folder will be prepended to
the file name before searching. Note that on case sensitive file systems, a case sensitive
comparison is performed, otherwise the case of symbols in the file path is ignored.

If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Invalid image file location.

• VBOX_E_OBJECT_NOT_FOUND: No matching floppy image found in the me-
dia registry.

202

9 Classes (interfaces)

9.49.11 findHardDisk
IHardDisk IVirtualBox::findHardDisk(

[in] wstring location)

Returns a hard disk that uses the given location to store hard disk data.
The given hard disk must be known to this VirtualBox installation, i.e. it must be

previously created by createHardDisk() or opened by openHardDisk(), or attached to
some known virtual machine.

The search is done by comparing the value of the location argument to the IHard-
Disk::location attribute of each known hard disk.

For locations represented by file names in the host’s file system, the requested loca-
tion can be a path relative to the VirtualBox home folder. If only a file name without
any path is given, the default hard disk folder will be prepended to the file name be-
fore searching. Note that on case sensitive file systems, a case sensitive comparison is
performed, otherwise the case of symbols in the file path is ignored.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: No hard disk object matching location
found.

9.49.12 findMachine
IMachine IVirtualBox::findMachine(

[in] wstring name)

Attempts to find a virtual machine given its name. To look up a machine by UUID,
use getMachine() instead.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Could not find registered machine matching
name.

9.49.13 getDVDImage
IDVDImage IVirtualBox::getDVDImage(

[in] uuid id)

Returns a CD/DVD image with the given UUID.
The image with the given UUID must be known to this VirtualBox installation, i.e.

it must be previously opened by openDVDImage(), or mounted to some known virtual
machine.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: No matching DVD image found in the media
registry.

203

9 Classes (interfaces)

9.49.14 getExtraData
wstring IVirtualBox::getExtraData(

[in] wstring key)

Returns associated global extra data.
If the requested data key does not exist, this function will succeed and return NULL

in the value argument.
If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

9.49.15 getFloppyImage
IFloppyImage IVirtualBox::getFloppyImage(

[in] uuid id)

Returns a floppy image with the given UUID.
The image with the given UUID must be known to this VirtualBox installation, i.e. it

must be previously opened by openFloppyImage(), or mounted to some known virtual
machine.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: No matching floppy image found in the me-
dia registry.

9.49.16 getGuestOSType
IGuestOSType IVirtualBox::getGuestOSType(

[in] wstring id)

Returns an object describing the specified guest OS type.
The requested guest OS type is specified using a string which is a mnemonic identi-

fier of the guest operating system, such as "win31" or "ubuntu". The guest OS type
ID of a particular virtual machine can be read or set using the IMachine::OSTypeId
attribute.

The guestOSTypes[] collection contains all available guest OS type objects. Each
object has an IGuestOSType::id attribute which contains an identifier of the guest OS
this object describes.

If this method fails, the following error codes may be reported:

• E_INVALIDARG: id is not a valid Guest OS type.

204

9 Classes (interfaces)

9.49.17 getHardDisk
IHardDisk IVirtualBox::getHardDisk(

[in] uuid id)

Returns a hard disk with the given UUID.
The hard disk with the given UUID must be known to this VirtualBox installation,

i.e. it must be previously created by createHardDisk() or opened by openHardDisk(),
or attached to some known virtual machine.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: No hard disk object matching id found.

9.49.18 getMachine
IMachine IVirtualBox::getMachine(

[in] uuid id)

Attempts to find a virtual machine given its UUID. To look up a machine by name,
use findMachine() instead.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Could not find registered machine matching
id.

9.49.19 getNextExtraDataKey
void IVirtualBox::getNextExtraDataKey(

[in] wstring key,
[out] wstring nextKey,
[out] wstring nextValue)

Returns the global extra data key name following the supplied key.
An error is returned if the supplied key does not exist. NULL is returned in nextKey

if the supplied key is the last key. When supplying NULL or an empty string for the
key, the first key item is returned in nextKey (if there is any). nextValue is an
optional parameter and if supplied, the next key’s value is returned in it.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Extra data key not found.

9.49.20 openDVDImage
IDVDImage IVirtualBox::openDVDImage(

[in] wstring location,
[in] uuid id)

205

9 Classes (interfaces)

Opens a CD/DVD image contained in the specified file of the supported format and
assigns it the given UUID.

After the image is successfully opened by this method, it gets remembered by
(known to) this VirtualBox installation and will be accessible through getDVDImage()
and findDVDImage() methods. Remembered images are also returned as part of the
DVDImages[] array and can be mounted to virtual machines. See IMedium for more
details.

See IMedium::location to get more details about the format of the location string.

Note: Currently only ISO 9960 CD/DVD images are supported by VirtualBox.

If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Invalid CD/DVD image file location or could not find
the CD/DVD image at the specified location.

• VBOX_E_INVALID_OBJECT_STATE: CD/DVD image already exists in the me-
dia registry.

9.49.21 openExistingSession
void IVirtualBox::openExistingSession(

[in] ISession session,
[in] uuid machineId)

Opens a new remote session with the virtual machine for which a direct session is
already open.

The remote session provides some level of control over the VM execution (using the
IConsole interface) to the caller; however, within the remote session context, not all
VM settings are available for modification.

As opposed to openRemoteSession(), the number of remote sessions opened this
way is not limited by the API

Note: It is an error to open a remote session with the machine that doesn’t
have an open direct session.

See also: openRemoteSession
If this method fails, the following error codes may be reported:

• E_UNEXPECTED: Virtual machine not registered.

• VBOX_E_OBJECT_NOT_FOUND: No machine matching machineId found.

• VBOX_E_INVALID_OBJECT_STATE: Session already open or being opened.

• VBOX_E_INVALID_SESSION_STATE: Direct session state not Open.

• VBOX_E_VM_ERROR: Failed to get console object from direct session or assign
machine to session.

206

9 Classes (interfaces)

9.49.22 openFloppyImage
IFloppyImage IVirtualBox::openFloppyImage(

[in] wstring location,
[in] uuid id)

Opens a floppy image contained in the specified file of the supported format and
assigns it the given UUID.

After the image is successfully opened by this method, it gets remembered by
(known to) this VirtualBox installation and will be accessible through getFloppyIm-
age() and findFloppyImage() methods. Remembered images are also returned as part
of the floppyImages[] array and can be mounted to virtual machines. See IMedium
for more details.

See IMedium::location to get more details about the format of the location string.

Note: Currently, only raw floppy images are supported by VirtualBox.

If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Invalid floppy image file location or could not find the
floppy image at the specified location.

• VBOX_E_INVALID_OBJECT_STATE: Floppy image already exists in the me-
dia registry.

9.49.23 openHardDisk
IHardDisk IVirtualBox::openHardDisk(

[in] wstring location,
[in] AccessMode accessMode)

Opens a hard disk from an existing location.
After the hard disk is successfully opened by this method, it gets remembered by

(known to) this VirtualBox installation and will be accessible through getHardDisk()
and findHardDisk() methods. Remembered root (base) hard disks are also returned as
part of the hardDisks[] array and can be attached to virtual machines. See IHardDisk
for more details.

If a differencing hard disk is to be opened by this method, the operation will suc-
ceed only if its parent hard disk and all ancestors, if any, are already known to this
VirtualBox installation (for example, were opened by this method before).

This method tries to guess the storage format of the specified hard disk by reading
hard disk data at the specified location.

If write is ReadWrite (which it should be), the image is opened for read/write
access and must have according permissions, as VirtualBox may actually write status
information into the disk’s metadata sections.

207

9 Classes (interfaces)

Note that write access is required for all typical image usage in VirtualBox, since
VirtualBox may need to write metadata such as a UUID into the image. The only
exception is opening a source image temporarily for copying and cloning when the
image will quickly be closed again.

Note that the format of the location string is storage format specific. See
IMedium::location, IHardDisk and ISystemProperties::defaultHardDiskFolder for more
details.

If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Invalid hard disk storage file location or could not
find the hard disk at the specified location.

• VBOX_E_IPRT_ERROR: Could not get hard disk storage format.

• E_INVALIDARG: Invalid hard disk storage format.

9.49.24 openMachine
IMachine IVirtualBox::openMachine(

[in] wstring settingsFile)

Opens a virtual machine from the existing settings file. The opened machine remains
unregistered until you call registerMachine().

The specified settings file name can be absolute (full path) or relative to the
VirtualBox home directory. This file must exist and must be a valid machine settings
file whose contents will be used to construct the machine object.

@deprecated Will be removed soon.
If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Settings file name invalid, not found or sharing viola-
tion.

9.49.25 openRemoteSession
IProgress IVirtualBox::openRemoteSession(

[in] ISession session,
[in] uuid machineId,
[in] wstring type,
[in] wstring environment)

Spawns a new process that executes a virtual machine (called a “remote session”).
Opening a remote session causes the VirtualBox server to start a new process that

opens a direct session with the given VM. As a result, the VM is locked by that direct
session in the new process, preventing conflicting changes from other processes. Since
sessions act as locks that prevent conflicting changes, one cannot open a remote ses-
sion for a VM that already has another open session (direct or remote), or is currently
in the process of opening one (see IMachine::sessionState).

208

9 Classes (interfaces)

While the remote session still provides some level of control over the VM execu-
tion to the caller (using the IConsole interface), not all VM settings are available for
modification within the remote session context.

This operation can take some time (a new VM is started in a new process, for
which memory and other resources need to be set up). Because of this, an IProgress
is returned to allow the caller to wait for this asynchronous operation to be com-
pleted. Until then, the remote session object remains in the closed state, and ac-
cessing the machine or its console through it is invalid. It is recommended to use
IProgress::waitForCompletion() or similar calls to wait for completion.

As with all ISession objects, it is recommended to call ISession::close() on the local
session object once openRemoteSession() has been called. However, the session’s state
(see ISession::state) will not return to “Closed” until the remote session has also closed
(i.e. until the VM is no longer running). In that case, however, the state of the session
will automatically change back to “Closed”.

Currently supported session types (values of the type argument) are:

• gui: VirtualBox Qt GUI session

• vrdp: VirtualBox VRDP Server session

The environment argument is a string containing definitions of environment
variables in the following format: @code NAME[=VALUE]\n NAME[=VALUE]\n ...
@endcode where \\n is the new line character. These environment variables will
be appended to the environment of the VirtualBox server process. If an environment
variable exists both in the server process and in this list, the value from this list takes
precedence over the server’s variable. If the value of the environment variable is omit-
ted, this variable will be removed from the resulting environment. If the environment
string is null, the server environment is inherited by the started process as is.

See also: openExistingSession
If this method fails, the following error codes may be reported:

• E_UNEXPECTED: Virtual machine not registered.

• E_INVALIDARG: Invalid session type type.

• VBOX_E_OBJECT_NOT_FOUND: No machine matching machineId found.

• VBOX_E_INVALID_OBJECT_STATE: Session already open or being opened.

• VBOX_E_IPRT_ERROR: Launching process for machine failed.

• VBOX_E_VM_ERROR: Failed to assign machine to session.

9.49.26 openSession
void IVirtualBox::openSession(

[in] ISession session,
[in] uuid machineId)

209

9 Classes (interfaces)

Opens a new direct session with the given virtual machine.
A direct session acts as a local lock on the given VM. There can be only one direct

session open at a time for every virtual machine, protecting the VM from being manip-
ulated by conflicting actions from different processes. Only after a direct session has
been opened, one can change all VM settings and execute the VM in the process space
of the session object.

Sessions therefore can be compared to mutex semaphores that lock a given VM for
modification and execution. See ISession for details.

Note: Unless you are writing a new VM frontend, you will not want to execute
a VM in the current process. To spawn a new process that executes a VM, use
openRemoteSession() instead.

Upon successful return, the session object can be used to get access to the machine
and to the VM console.

In VirtualBox terminology, the machine becomes “mutable” after a session has been
opened. Note that the “mutable” machine object, on which you may invoke IMachine
methods to change its settings, will be a different object from the immutable IMachine
objects returned by various IVirtualBox methods. To obtain a mutable IMachine object
(upon which you can invoke settings methods), use the ISession::machine attribute.

One must always call ISession::close() to release the lock on the machine, or the
machine’s state will eventually be set to “Aborted”.

In other words, to change settings on a machine, the following sequence is typically
performed:

1. Call this method (openSession) to have a machine locked for the current session.

2. Obtain a mutable IMachine object from ISession::machine.

3. Change the settings of the machine.

4. Call IMachine::saveSettings().

5. Close the session by calling ISession::close().

If this method fails, the following error codes may be reported:

• E_UNEXPECTED: Virtual machine not registered.

• E_ACCESSDENIED: Process not started by OpenRemoteSession.

• VBOX_E_OBJECT_NOT_FOUND: No matching virtual machine found.

• VBOX_E_INVALID_OBJECT_STATE: Session already open or being opened.

• VBOX_E_VM_ERROR: Failed to assign machine to session.

210

9 Classes (interfaces)

9.49.27 registerCallback
void IVirtualBox::registerCallback(

[in] IVirtualBoxCallback callback)

Registers a new global VirtualBox callback. The methods of the given callback object
will be called by VirtualBox when an appropriate event occurs.

If this method fails, the following error codes may be reported:

• E_INVALIDARG: A NULL callback cannot be registered.

9.49.28 registerMachine
void IVirtualBox::registerMachine(

[in] IMachine machine)

Registers the machine previously created using createMachine() or opened using
openMachine() within this VirtualBox installation. After successful method invoca-
tion, the IVirtualBoxCallback::onMachineRegistered() signal is sent to all registered
callbacks.

Note: This method implicitly calls IMachine::saveSettings() to save all current
machine settings before registering it.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: No matching virtual machine found.

• VBOX_E_INVALID_OBJECT_STATE: Virtual machine was not created within
this VirtualBox instance.

9.49.29 removeDHCPServer
void IVirtualBox::removeDHCPServer(

[in] IDHCPServer server)

Removes the dhcp server settings
If this method fails, the following error codes may be reported:

• E_INVALIDARG: Host network interface name already exists.

211

9 Classes (interfaces)

9.49.30 removeSharedFolder
void IVirtualBox::removeSharedFolder(

[in] wstring name)

Removes the global shared folder with the given name previously created by create-
SharedFolder() from the collection of shared folders and stops sharing it.

Note: In the current implementation, this operation is not implemented.

9.49.31 saveSettings
void IVirtualBox::saveSettings()

Saves the global settings to the global settings file (settingsFilePath).
This method is only useful for explicitly saving the global settings file after it has

been auto-converted from the old format to the most recent format (see settings-
FileVersion for details). Normally, the global settings file is implicitly saved when a
global setting is changed.

If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

9.49.32 saveSettingsWithBackup
wstring IVirtualBox::saveSettingsWithBackup()

Creates a backup copy of the global settings file (settingsFilePath) in case of auto-
conversion, and then calls saveSettings().

Note that the backup copy is created only if the settings file auto-conversion took
place (see settingsFileVersion for details). Otherwise, this call is fully equivalent to
saveSettings() and no backup copying is done.

The backup copy is created in the same directory where the original settings file is
located. It is given the following file name:

original.xml.x.y-platform.bak

where original.xml is the original settings file name (excluding path), and
x.y-platform is the version of the old format of the settings file (before auto-
conversion).

If the given backup file already exists, this method will try to add the .N suffix to
the backup file name (where N counts from 0 to 9) and copy it again until it succeeds.

212

9 Classes (interfaces)

If all suffixes are occupied, or if any other copy error occurs, this method will return a
failure.

If the copy operation succeeds, the bakFileName return argument will receive a
full path to the created backup file (for informational purposes). Note that this will
happen even if the subsequent saveSettings() call performed by this method after the
copy operation, fails.

Note: The VirtualBox API never calls this method. It is intended purely for the
purposes of creating backup copies of the settings files by front-ends before
saving the results of the automatically performed settings conversion to disk.

See also: settingsFileVersion
If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

• VBOX_E_IPRT_ERROR: Could not copy the settings file.

9.49.33 setExtraData
void IVirtualBox::setExtraData(

[in] wstring key,
[in] wstring value)

Sets associated global extra data.
If you pass NULL as a key value, the given key will be deleted.

Note: Before performing the actual data change, this method will ask all
registered callbacks using the IVirtualBoxCallback::onExtraDataCanChange()
notification for a permission. If one of the callbacks refuses the new value,
the change will not be performed.

Note: On success, the IVirtualBoxCallback::onExtraDataChange() notifica-
tion is called to inform all registered callbacks about a successful data change.

If this method fails, the following error codes may be reported:

• VBOX_E_FILE_ERROR: Settings file not accessible.

• VBOX_E_XML_ERROR: Could not parse the settings file.

• E_ACCESSDENIED: Modification request refused.

213

9 Classes (interfaces)

9.49.34 unregisterCallback
void IVirtualBox::unregisterCallback(

[in] IVirtualBoxCallback callback)

Unregisters the previously registered global VirtualBox callback.
If this method fails, the following error codes may be reported:

• E_INVALIDARG: Specified callback not registered.

9.49.35 unregisterMachine
IMachine IVirtualBox::unregisterMachine(

[in] uuid id)

Unregisters the machine previously registered using registerMachine(). After suc-
cessful method invocation, the IVirtualBoxCallback::onMachineRegistered() signal is
sent to all registered callbacks.

Note: The specified machine must not be in the Saved state, have an open
(or a spawning) direct session associated with it, have snapshots or have hard
disks attached.

Note: This method implicitly calls IMachine::saveSettings() to save all current
machine settings before unregistering it.

Note: If the given machine is inaccessible (see IMachine::accessible), it will be
unregistered and fully uninitialized right afterwards. As a result, the returned
machine object will be unusable and an attempt to call any method will return
the “Object not ready” error.

If this method fails, the following error codes may be reported:

• VBOX_E_OBJECT_NOT_FOUND: Could not find registered machine matching
id.

• VBOX_E_INVALID_VM_STATE: Machine is in Saved state.

• VBOX_E_INVALID_OBJECT_STATE: Machine has snapshot or open session
or hard disk attached.

214

9 Classes (interfaces)

9.49.36 waitForPropertyChange
void IVirtualBox::waitForPropertyChange(

[in] wstring what,
[in] unsigned long timeout,
[out] wstring changed,
[out] wstring values)

Blocks the caller until any of the properties represented by the what argument
changes the value or until the given timeout interval expires.

The what argument is a comma separated list of property masks that describe prop-
erties the caller is interested in. The property mask is a string in the following format:

[[group.]subgroup.]name

where name is the property name and group, subgroup are zero or more property
group specifiers. Each element (group or name) in the property mask may be either
a Latin string or an asterisk symbol (@c “*“) which is used to match any string for
the given element. A property mask that doesn’t contain asterisk symbols represents a
single fully qualified property name.

Groups in the fully qualified property name go from more generic (the left-most
part) to more specific (the right-most part). The first element is usually a name of the
object the property belongs to. The second element may be either a property name,
or a child object name, or an index if the preceding element names an object which is
one of many objects of the same type. This way, property names form a hierarchy of
properties. Here are some examples of property names:
VirtualBox.versionversion propertyMachine.<UUID>.nameIMachine::name

property of the machine with the given UUID
Most property names directly correspond to the properties of objects (components)

provided by the VirtualBox library and may be used to track changes to these prop-
erties. However, there may be pseudo-property names that don’t correspond to any
existing object’s property directly, as well as there may be object properties that don’t
have a corresponding property name that is understood by this method, and there-
fore changes to such properties cannot be tracked. See individual object’s property
descriptions to get a fully qualified property name that can be used with this method
(if any).

There is a special property mask @c “*“ (i.e. a string consisting of a single asterisk
symbol) that can be used to match all properties. Below are more examples of property
masks:
VirtualBox.*Track all properties of the VirtualBox objectMachine.*.nameTrack

changes to the IMachine::name property of all registered virtual machines

Note: This function is not implemented in the current version of the product.

215

9 Classes (interfaces)

9.50 IVirtualBoxCallback

Note: This interface is not supported in the web service.

9.50.1 onExtraDataCanChange
boolean IVirtualBoxCallback::onExtraDataCanChange(

[in] uuid machineId,
[in] wstring key,
[in] wstring value,
[out] wstring error)

Notification when someone tries to change extra data for either the given machine
or (if null) global extra data. This gives the chance to veto against changes.

9.50.2 onExtraDataChange
void IVirtualBoxCallback::onExtraDataChange(

[in] uuid machineId,
[in] wstring key,
[in] wstring value)

Notification when machine specific or global extra data has changed.

9.50.3 onGuestPropertyChange
void IVirtualBoxCallback::onGuestPropertyChange(

[in] uuid machineId,
[in] wstring name,
[in] wstring value,
[in] wstring flags)

Notification when a guest property has changed.

9.50.4 onMachineDataChange
void IVirtualBoxCallback::onMachineDataChange(

[in] uuid machineId)

Any of the settings of the given machine has changed.

216

9 Classes (interfaces)

9.50.5 onMachineRegistered
void IVirtualBoxCallback::onMachineRegistered(

[in] uuid machineId,
[in] boolean registered)

The given machine was registered or unregistered within this VirtualBox installa-
tion.

9.50.6 onMachineStateChange
void IVirtualBoxCallback::onMachineStateChange(

[in] uuid machineId,
[in] MachineState state)

The execution state of the given machine has changed. See also: IMachine::state

9.50.7 onMediaRegistered
void IVirtualBoxCallback::onMediaRegistered(

[in] uuid mediaId,
[in] DeviceType mediaType,
[in] boolean registered)

The given media was registered or unregistered within this VirtualBox installation.
The mediaType parameter describes what type of media the specified mediaId

refers to. Possible values are:

• ::: the media is a hard disk that, if registered, can be obtained using the IVirtu-
alBox::getHardDisk() call.

• ::: the media is a CD/DVD image that, if registered, can be obtained using the
IVirtualBox::getDVDImage() call.

• ::: the media is a Floppy image that, if registered, can be obtained using the
IVirtualBox::getFloppyImage() call.

Note that if this is a deregistration notification, there is no way to access the ob-
ject representing the unregistered media. It is supposed that the application will do
required cleanup based on the mediaId value.

9.50.8 onSessionStateChange
void IVirtualBoxCallback::onSessionStateChange(

[in] uuid machineId,
[in] SessionState state)

The state of the session for the given machine was changed. See also: IMa-
chine::sessionState

217

9 Classes (interfaces)

9.50.9 onSnapshotChange
void IVirtualBoxCallback::onSnapshotChange(

[in] uuid machineId,
[in] uuid snapshotId)

Snapshot properties (name and/or description) have been changed. See also: IS-
napshot

9.50.10 onSnapshotDiscarded
void IVirtualBoxCallback::onSnapshotDiscarded(

[in] uuid machineId,
[in] uuid snapshotId)

Snapshot of the given machine has been discarded.

Note: This notification is delivered after the snapshot object has been unini-
tialized on the server (so that any attempt to call its methods will return an
error).

See also: ISnapshot

9.50.11 onSnapshotTaken
void IVirtualBoxCallback::onSnapshotTaken(

[in] uuid machineId,
[in] uuid snapshotId)

A new snapshot of the machine has been taken. See also: ISnapshot

9.51 IVirtualBoxErrorInfo

Note: This interface is not supported in the web service.

The IVirtualBoxErrorInfo interface represents extended error information.
Extended error information can be set by VirtualBox components after unsuccessful

or partially successful method invocation. This information can be retrieved by the
calling party as an IVirtualBoxErrorInfo object and then shown to the client in addition
to the plain 32-bit result code.

In MS COM, this interface extends the IErrorInfo interface, in XPCOM, it extends
the nsIException interface. In both cases, it provides a set of common attributes to
retrieve error information.

218

9 Classes (interfaces)

Sometimes invocation of some component’s method may involve methods of other
components that may also fail (independently of this method’s failure), or a series of
non-fatal errors may precede a fatal error that causes method failure. In cases like that,
it may be desirable to preserve information about all errors happened during method
invocation and deliver it to the caller. The next attribute is intended specifically for this
purpose and allows to represent a chain of errors through a single IVirtualBoxErrorInfo
object set after method invocation.

Note that errors are stored to a chain in the reverse order, i.e. the initial error object
you query right after method invocation is the last error set by the callee, the object
it points to in the next attribute is the previous error and so on, up to the first error
(which is the last in the chain).

9.51.1 Attributes

9.51.1.1 resultCode (read-only)

result IVirtualBoxErrorInfo::resultCode

Result code of the error. Usually, it will be the same as the result code returned by the
method that provided this error information, but not always. For example, on Win32,
CoCreateInstance() will most likely return E_NOINTERFACE upon unsuccessful com-
ponent instantiation attempt, but not the value the component factory returned.

Note: In MS COM, there is no equivalent. In XPCOM, it is the same as nsIEx-
ception::result.

9.51.1.2 interfaceID (read-only)

uuid IVirtualBoxErrorInfo::interfaceID

UUID of the interface that defined the error.

Note: In MS COM, it is the same as IErrorInfo::GetGUID. In XPCOM, there is
no equivalent.

9.51.1.3 component (read-only)

wstring IVirtualBoxErrorInfo::component

Name of the component that generated the error.

Note: In MS COM, it is the same as IErrorInfo::GetSource. In XPCOM, there
is no equivalent.

219

9 Classes (interfaces)

9.51.1.4 text (read-only)

wstring IVirtualBoxErrorInfo::text

Text description of the error.

Note: In MS COM, it is the same as IErrorInfo::GetDescription. In XPCOM, it
is the same as nsIException::message.

9.51.1.5 next (read-only)

IVirtualBoxErrorInfo IVirtualBoxErrorInfo::next

Note: This attribute is not supported in the web service.

Next error object if there is any, or null otherwise.

Note: In MS COM, there is no equivalent. In XPCOM, it is the same as nsIEx-
ception::inner.

9.52 IVirtualSystemDescription

This interface is used in the IAppliance::virtualSystemDescriptions[] array. After IAp-
pliance::interpret() has been called, that array contains information about how the
virtual systems described in the OVF should best be imported into VirtualBox virtual
machines. See IAppliance for the steps required to import an OVF into VirtualBox.

9.52.1 Attributes

9.52.1.1 count (read-only)

unsigned long IVirtualSystemDescription::count

Return the number of virtual system description entries.

220

9 Classes (interfaces)

9.52.2 addDescription
void IVirtualSystemDescription::addDescription(

[in] VirtualSystemDescriptionType aType,
[in] wstring aVboxValue,
[in] wstring aExtraConfigValue)

This method adds an additional description entry to the stack of already available
descriptions for this virtual system. This is handy for writing values which aren’t di-
rectly supported by VirtualBox. One example would be the License type of VirtualSys-
temDescriptionType.

9.52.3 getDescription
void IVirtualSystemDescription::getDescription(

[out] VirtualSystemDescriptionType aTypes[],
[out] wstring aRefs[],
[out] wstring aOvfValues[],
[out] wstring aVboxValues[],
[out] wstring aExtraConfigValues[])

Returns information about the virtual system as arrays of instruction items. In each
array, the items with the same indices correspond and jointly represent an import
instruction for VirtualBox.

The list below identifies the value sets that are possible depending on the Virtual-
SystemDescriptionType enum value in the array item in aTypes[]. In each case, the
array item with the same index in aOvfValues[] will contain the original value as con-
tained in the OVF file (just for informational purposes), and the corresponding item
in aVboxValues[] will contain a suggested value to be used for VirtualBox. Depending
on the description type, the aExtraConfigValues[] array item may also be used.

• “OS”: the guest operating system type. There must be exactly one such array
item on import. The corresponding item in aVboxValues[] contains the sug-
gested guest operating system for VirtualBox. This will be one of the values
listed in IVirtualBox::guestOSTypes[]. The corresponding item in aOvfValues[]
will contain a numerical value that described the operating system in the OVF
(see CIMOSType).

• “Name”: the name to give to the new virtual machine. There can be at most one
such array item; if none is present on import, then an automatic name will be
created from the operating system type. The correponding item im aOvfValues[]
will contain the suggested virtual machine name from the OVF file, and aVbox-
Values[] will contain a suggestion for a unique VirtualBox IMachine name that
does not exist yet.

• “Description”: an arbitrary description.

221

9 Classes (interfaces)

• “License”: the EULA section from the OVF, if present. It is the responsibility of
the calling code to display such a license for agreement; the Main API does not
enforce any such policy.

• Miscellaneous: reserved for future use.

• “CPU”: the number of CPUs. There can be at most one such item, which will
presently be ignored.

• “Memory”: the amount of guest RAM, in bytes. There can be at most one such
array item; if none is present on import, then VirtualBox will set a meaningful
default based on the operating system type.

• “HarddiskControllerIDE”: an IDE hard disk controller. There can be at most one
such item. This has no value in aOvfValues[] or aVboxValues[]. The matching
item in the aRefs[] array will contain an integer that items of the “Harddisk” type
can use to specify which hard disk controller a virtual disk should be connected
to.

• “HarddiskControllerSATA”: an SATA hard disk controller. There can be at most
one such item. This has no value in aOvfValues[] or aVboxValues[]. The match-
ing item in the aRefs[] array will be used as with IDE controllers (see above).

• “HarddiskControllerSCSI”: a SCSI hard disk controller. There can be at most one
such item. The items in aOvfValues[] and aVboxValues[] will either be “LsiLogic”
or “BusLogic”. The matching item in the aRefs[] array will be used as with IDE
controllers (see above).

• “HardDiskImage”: a virtual hard disk, most probably as a reference to an image
file. There can be an arbitrary number of these items, one for each virtual disk
image that accompanies the OVF.

The array item in aOvfValues[] will contain the file specification from the OVF
file (without a path since the image file should be in the same location as the
OVF file itself), whereas the item in aVboxValues[] will contain a qualified path
specification to where VirtualBox uses the hard disk image. This means that on
import the image will be copied and converted from the “ovf” location to the
“vbox” location; on export, this will be handled the other way round. On import,
the target image will also be registered with VirtualBox.

The matching item in the aExtraConfigValues[] array must contain a string of
the following format: “controller=<index>;channel=<c>“ In this string, <in-
dex> must be an integer specifying the hard disk controller to connect the im-
age to. That number must be the index of an array item with one of the hard
disk controller types (HarddiskControllerSCSI, HarddiskControllerSATA, Hard-
diskControllerIDE). In addition, <c> must specify the channel to use on that
controller. For IDE controllers, this can range from 0-2 (which VirtualBox will
interpret as primary master, primary slave, secondary slave; VirtualBox reserves

222

9 Classes (interfaces)

the secondary master for the CD-ROM drive). For SATA and SCSI conrollers, the
channel can range from 0-29.

• “NetworkAdapter”: a network adapter. The array item in aVboxValues[] will
specify the hardware for the network adapter, whereas the array item in aExtra-
ConfigValues[] will have a string of the “type=<X>“ format, where <X> must
be either “NAT” or “Bridged”.

• “USBController”: a USB controller. There can be at most one such item. If and
only if such an item ispresent, USB support will be enabled for the new virtual
machine.

• “SoundCard”: a sound card. There can be at most one such item. If and only
if such an item is present, sound support will be enabled for the new virtual
machine. Note that the virtual machine in VirtualBox will always be presented
with the standard VirtualBox soundcard, which may be different from the virtual
soundcard expected by the appliance.

9.52.4 getDescriptionByType
void IVirtualSystemDescription::getDescriptionByType(

[in] VirtualSystemDescriptionType aType,
[out] VirtualSystemDescriptionType aTypes[],
[out] wstring aRefs[],
[out] wstring aOvfValues[],
[out] wstring aVboxValues[],
[out] wstring aExtraConfigValues[])

This is the same as getDescription() except that you can specify which types should
be returned.

9.52.5 getValuesByType
wstring IVirtualSystemDescription::getValuesByType(

[in] VirtualSystemDescriptionType aType,
[in] VirtualSystemDescriptionValueType aWhich)

This is the same as getDescriptionByType() except that you can specify which value
types should be returned. See VirtualSystemDescriptionValueType for possible values.

9.52.6 setFinalValues
void IVirtualSystemDescription::setFinalValues(

[in] boolean aEnabled[],
[in] wstring aVboxValues[],
[in] wstring aExtraConfigValues[])

223

9 Classes (interfaces)

This method allows the appliance’s user to change the configuration for the virtual
system descriptions. For each array item returned from getDescription(), you must
pass in one boolean value and one configuration value.

Each item in the boolean array determines whether the particular configuration item
should be enabled. You can only disable items of the types HardDiskControllerIDE,
HardDiskControllerSATA, HardDiskControllerSCSI, HardDiskImage, CDROM, Floppy,
NetworkAdapter, USBController and SoundCard.

For the “vbox” and “extra configuration” values, if you pass in the same arrays as
returned in the aVboxValues and aExtraConfigValues arrays from getDescription(), the
configuration remains unchanged. Please see the documentation for getDescription()
for valid configuration values for the individual array item types. If the corresponding
item in the aEnabled array is false, the configuration value is ignored.

9.53 IWebsessionManager

Note: This interface is supported in the web service only, not in COM/XPCOM.

Websession manager. This provides essential services to webservice clients.

9.53.1 getSessionObject
ISession IWebsessionManager::getSessionObject(

[in] IVirtualBox refIVirtualBox)

Returns a managed object reference to the internal ISession object that was created
for this web service session when the client logged on.

See also: ISession

9.53.2 logoff
void IWebsessionManager::logoff(

[in] IVirtualBox refIVirtualBox)

Logs off the client who has previously logged on with logoff() and destroys all re-
sources associated with the session (most importantly, all managed objects created in
the server while the session was active).

9.53.3 logon
IVirtualBox IWebsessionManager::logon(

[in] wstring username,
[in] wstring password)

224

9 Classes (interfaces)

Logs a new client onto the webservice and returns a managed object reference to
the IVirtualBox instance, which the client can then use as a basis to further queries,
since all calls to the VirtualBox API are based on the IVirtualBox interface, in one way
or the other.

225

10 Enumerations (enums)

10.1 AccessMode

Access mode for opening files.

ReadOnly

ReadWrite

10.2 AudioControllerType

Virtual audio controller type.

AC97

SB16

10.3 AudioDriverType

Host audio driver type.

Null Null value, also means “dummy audio driver”.

WinMM

OSS

ALSA

DirectSound

CoreAudio

MMPM

Pulse

SolAudio

226

10 Enumerations (enums)

10.4 BIOSBootMenuMode

BIOS boot menu mode.

Disabled

MenuOnly

MessageAndMenu

10.5 CIMOSType

OVF operating system values according to CIM V2.20 (as of Nov 2008); http://www.dmtf.org/standards/cim/cim_schema_v220

CIMOS_Unknown

CIMOS_Other

CIMOS_MACOS

CIMOS_ATTUNIX

CIMOS_DGUX

CIMOS_DECNT

CIMOS_Tru64UNIX

CIMOS_OpenVMS

CIMOS_HPUX

CIMOS_AIX

CIMOS_MVS

CIMOS_OS400

CIMOS_OS2

CIMOS_JavaVM

CIMOS_MSDOS

CIMOS_WIN3x

CIMOS_WIN95

CIMOS_WIN98

CIMOS_WINNT

227

10 Enumerations (enums)

CIMOS_WINCE

CIMOS_NCR3000

CIMOS_NetWare

CIMOS_OSF

CIMOS_DCOS

CIMOS_ReliantUNIX

CIMOS_SCOUnixWare

CIMOS_SCOOpenServer

CIMOS_Sequent

CIMOS_IRIX

CIMOS_Solaris

CIMOS_SunOS

CIMOS_U6000

CIMOS_ASERIES

CIMOS_HPNonStopOS

CIMOS_HPNonStopOSS

CIMOS_BS2000

CIMOS_LINUX

CIMOS_Lynx

CIMOS_XENIX

CIMOS_VM

CIMOS_InteractiveUNIX

CIMOS_BSDUNIX

CIMOS_FreeBSD

CIMOS_NetBSD

CIMOS_GNUHurd

CIMOS_OS9

228

10 Enumerations (enums)

CIMOS_MACHKernel

CIMOS_Inferno

CIMOS_QNX

CIMOS_EPOC

CIMOS_IxWorks

CIMOS_VxWorks

CIMOS_MiNT

CIMOS_BeOS

CIMOS_HPMPE

CIMOS_NextStep

CIMOS_PalmPilot

CIMOS_Rhapsody

CIMOS_Windows2000

CIMOS_Dedicated

CIMOS_OS390

CIMOS_VSE

CIMOS_TPF

CIMOS_WindowsMe

CIMOS_CalderaOpenUNIX

CIMOS_OpenBSD

CIMOS_NotApplicable

CIMOS_WindowsXP

CIMOS_zOS

CIMOS_MicrosoftWindowsServer2003

CIMOS_MicrosoftWindowsServer2003_64

CIMOS_WindowsXP_64

CIMOS_WindowsXPEmbedded

229

10 Enumerations (enums)

CIMOS_WindowsVista

CIMOS_WindowsVista_64

CIMOS_WindowsEmbeddedforPointofService

CIMOS_MicrosoftWindowsServer2008

CIMOS_MicrosoftWindowsServer2008_64

CIMOS_FreeBSD_64

CIMOS_RedHatEnterpriseLinux

CIMOS_RedHatEnterpriseLinux_64

CIMOS_Solaris_64

CIMOS_SUSE

CIMOS_SUSE_64

CIMOS_SLES

CIMOS_SLES_64

CIMOS_NovellOES

CIMOS_NovellLinuxDesktop

CIMOS_SunJavaDesktopSystem

CIMOS_Mandriva

CIMOS_Mandriva_64

CIMOS_TurboLinux

CIMOS_TurboLinux_64

CIMOS_Ubuntu

CIMOS_Ubuntu_64

CIMOS_Debian

CIMOS_Debian_64

CIMOS_Linux_2_4_x

CIMOS_Linux_2_4_x_64

CIMOS_Linux_2_6_x

CIMOS_Linux_2_6_x_64

CIMOS_Linux_64

CIMOS_Other_64

230

10 Enumerations (enums)

10.6 ClipboardMode

Host-Guest clipboard interchange mode.

Disabled

HostToGuest

GuestToHost

Bidirectional

10.7 DataFlags

None

Mandatory

Expert

Array

FlagMask

10.8 DataType

Int32

Int8

String

10.9 DeviceActivity

Device activity for IConsole::getDeviceActivity().

Null

Idle

Reading

Writing

231

10 Enumerations (enums)

10.10 DeviceType

Device type.

Null Null value, may also mean “no device” (not allowed for IConsole::getDeviceActivity()).

Floppy Floppy device.

DVD CD/DVD-ROM device.

HardDisk Hard disk device.

Network Network device.

USB USB device.

SharedFolder Shared folder device.

10.11 DriveState

Null Null value (never used by the API).

NotMounted

ImageMounted

HostDriveCaptured

10.12 FramebufferAccelerationOperation

Frame buffer acceleration operation.

SolidFillAcceleration

ScreenCopyAcceleration

10.13 FramebufferPixelFormat

Format of the video memory buffer. Constants represented by this enum can be
used to test for particular values of IFramebuffer::pixelFormat. See also IFrame-
buffer::requestResize().

See also www.fourcc.org for more information about FOURCC pixel formats.

Opaque Unknown buffer format (the user may not assume any particular format of
the buffer).

FOURCC_RGB Basic RGB format (IFramebuffer::bitsPerPixel determines the bit lay-
out).

232

10 Enumerations (enums)

10.14 GuestStatisticType

Statistics type for IGuest::getStatistic().

CPULoad_Idle Idle CPU load (0-100%) for last interval.

CPULoad_Kernel Kernel CPU load (0-100%) for last interval.

CPULoad_User User CPU load (0-100%) for last interval.

Threads Total number of threads in the system.

Processes Total number of processes in the system.

Handles Total number of handles in the system.

MemoryLoad Memory load (0-100%).

PhysMemTotal Total physical memory in megabytes.

PhysMemAvailable Free physical memory in megabytes.

PhysMemBalloon Ballooned physical memory in megabytes.

MemCommitTotal Total amount of memory in the committed state in megabytes.

MemKernelTotal Total amount of memory used by the guest OS’s kernel in
megabytes.

MemKernelPaged Total amount of paged memory used by the guest OS’s kernel in
megabytes.

MemKernelNonpaged Total amount of non-paged memory used by the guest OS’s
kernel in megabytes.

MemSystemCache Total amount of memory used by the guest OS’s system cache in
megabytes.

PageFileSize Pagefile size in megabytes.

SampleNumber Statistics sample number

MaxVal

233

10 Enumerations (enums)

10.15 HardDiskFormatCapabilities

Hard disk format capability flags.

Uuid Supports UUIDs as expected by VirtualBox code.

CreateFixed Supports creating fixed size images, allocating all space instantly.

CreateDynamic Supports creating dynamically growing images, allocating space on
demand.

CreateSplit2G Supports creating images split in chunks of a bit less than 2 GBytes.

Differencing Supports being used as a format for differencing hard disks (see IHard-
Disk::createDiffStorage()).

Asynchronous Supports asynchronous I/O operations for at least some configura-
tions.

File The format backend operates on files (the IMedium::location attribute of the hard
disk specifies a file used to store hard disk data; for a list of supported file exten-
sions see IHardDiskFormat::fileExtensions[]).

Properties The format backend uses the property interface to configure the storage
location and properties (the IHardDiskFormat::describeProperties() method is
used to get access to properties supported by the given hard disk format).

CapabilityMask

10.16 HardDiskType

Virtual hard disk type. See also: IHardDisk

Normal Normal hard disk (attached directly or indirectly, preserved when taking
snapshots).

Immutable Immutable hard disk (attached indirectly, changes are wiped out after
powering off the virtual machine).

Writethrough Write through hard disk (attached directly, ignored when taking snap-
shots).

10.17 HardDiskVariant

Virtual hard disk image variant. More than one flag may be set. See also: IHardDisk

Standard No particular variant requested, results in using the backend default.

234

10 Enumerations (enums)

VmdkSplit2G VMDK image split in chunks of less than 2GByte.

VmdkStreamOptimized VMDK streamOptimized image. Special import/export for-
mat which is read-only/append-only.

VmdkESX VMDK format variant used on ESX products.

Fixed Fixed image. Only allowed for base images.

Diff Fixed image. Only allowed for base images.

10.18 HostNetworkInterfaceMediumType

Type of encapsulation. Ethernet encapsulation includes both wired and wireless Eth-
ernet connections. See also: IHostNetworkInterface

Unknown The type of interface cannot be determined.

Ethernet Ethernet frame encapsulation.

PPP Point-to-point protocol encapsulation.

SLIP Serial line IP encapsulation.

10.19 HostNetworkInterfaceStatus

Current status of the interface. See also: IHostNetworkInterface

Unknown The state of interface cannot be determined.

Up The interface is fully operational.

Down The interface is not functioning.

10.20 HostNetworkInterfaceType

Network interface type.

Bridged

HostOnly

235

10 Enumerations (enums)

10.21 MachineState

Virtual machine execution state.
This enumeration represents possible values of the IMachine::state attribute.
Below is the basic virtual machine state diagram. It shows how the state changes

during virtual machine execution. The text in square braces shows a method of the
IConsole interface that performs the given state transition.

+---------[powerDown()] <- Stuck <--[failure]-+
V |

+-> PoweredOff --+-->[powerUp()]--> Starting --+ | +-----[resume()]-----+
| | | | V |
| Aborted -----+ +--> Running --[pause()]--> Paused
	^	^	
Saved -----------[powerUp()]--> Restoring -+			
^			
	+---+-	-------------------+ +	
	+-- Saving <--------[takeSnapshot()]<-------+---------------------+		
+-------- Saving <--------[saveState()]<----------+---------------------+			
+-------------- Stopping -------[powerDown()]<----------+---------------------+

Note that states to the right from PoweredOff, Aborted and Saved in the above
diagram are called online VM states. These states represent the virtual machine which
is being executed in a dedicated process (usually with a GUI window attached to it
where you can see the activity of the virtual machine and interact with it). There are
two special pseudo-states, FirstOnline and LastOnline, that can be used in relational
expressions to detect if the given machine state is online or not:

if (machine.GetState() >= MachineState_FirstOnline &&
machine.GetState() <= MachineState_LastOnline)

{
...the machine is being executed...

}

When the virtual machine is in one of the online VM states (that is, being executed),
only a few machine settings can be modified. Methods working with such settings
contain an explicit note about that. An attempt to change any oter setting or perform
a modifying operation during this time will result in the error.

All online states except Running, Paused and Stuck are transitional: they represent
temporary conditions of the virtual machine that will last as long as the operation that
initiated such a condition.

The Stuck state is a special case. It means that execution of the machine has reached
the “Guru Meditation” condition. This condition indicates an internal VMM (virtual

236

10 Enumerations (enums)

machine manager) failure which may happen as a result of either an unhandled low-
level virtual hardware exception or one of the recompiler exceptions (such as the
too-many-traps condition).

Note also that any online VM state may transit to the Aborted state. This happens if
the process that is executing the virtual machine terminates unexpectedly (for exam-
ple, crashes). Other than that, the Aborted state is equivalent to PoweredOff.

There are also a few additional state diagrams that do not deal with virtual machine
execution and therefore are shown separately. The states shown on these diagrams
are called offline VM states (this includes PoweredOff, Aborted and Saved too).

The first diagram shows what happens when a lengthy setup operation is being
executed (such as IMachine::attachHardDisk()).

+----------------------------------(same state as before the call)------+
| |
+-> PoweredOff --+ |
| | |
|-> Aborted -----+-->[lengthy VM configuration call] --> SettingUp -----+
| |
+-> Saved -------+

The next two diagrams demonstrate the process of taking a snapshot of a powered
off virtual machine and performing one of the “discard...“ operations, respectively.

+----------------------------------(same state as before the call)------+
| |
+-> PoweredOff --+ |
| +-->[takeSnapshot()] -------------------> Saving ------+
+-> Aborted -----+

+-> PoweredOff --+
| |
| Aborted -----+-->[discardSnapshot()]-------------> Discarding --+
| | [discardCurrentState()] |
+-> Saved -------+ [discardCurrentSnapshotAndState()] |
| |
+---(Saved if restored from an online snapshot, PoweredOff otherwise)---+

Note that the Saving state is present in both the offline state group and online state
group. Currently, the only way to determine what group is assumed in a particular
case is to remember the previous machine state: if it was Running or Paused, then
Saving is an online state, otherwise it is an offline state. This inconsistency may be
removed in one of the future versions of VirtualBox by adding a new state.

Null Null value (never used by the API).

PoweredOff The machine is not running.

237

10 Enumerations (enums)

Saved The machine is not currently running, but the execution state of the machine
has been saved to an external file when it was running.

Aborted The process running the machine has terminated abnormally.

Running The machine is currently being executed.

Paused Execution of the machine has been paused.

Stuck Execution of the machine has reached the “Guru Meditation” condition.

Starting Machine is being started after powering it on from a zero execution state.

Stopping Machine is being normally stopped powering it off, or after the guest OS
has initiated a shutdown sequence.

Saving Machine is saving its execution state to a file or an online snapshot of the
machine is being taken.

Restoring Execution state of the machine is being restored from a file after powering
it on from the saved execution state.

Discarding Snapshot of the machine is being discarded.

SettingUp Lengthy setup operation is in progress.

FirstOnline Pseudo-state: first online state (for use in relational expressions).

LastOnline Pseudo-state: last online state (for use in relational expressions).

FirstTransient Pseudo-state: first transient state (for use in relational expressions).

LastTransient Pseudo-state: last transient state (for use in relational expressions).

10.22 MediaState

Virtual media state. See also: IMedia

NotCreated Associated media storage does not exist (either was not created yet or
was deleted).

Created Associated storage exists and accessible.

LockedRead Media is locked for reading, no data modification is possible.

LockedWrite Media is locked for writing, no concurrent data reading or modification
is possible.

Inaccessible Associated media storage is not accessible.

Creating Associated media storage is being created.

Deleting Associated media storage is being deleted.

238

10 Enumerations (enums)

10.23 MouseButtonState

Mouse button state.

LeftButton

RightButton

MiddleButton

WheelUp

WheelDown

MouseStateMask

10.24 NetworkAdapterType

Network adapter type.

Null Null value (never used by the API).

Am79C970A AMD PCNet-PCI II network card (Am79C970A).

Am79C973 AMD PCNet-FAST III network card (Am79C973).

I82540EM Intel PRO/1000 MT Desktop network card (82540EM).

I82543GC Intel PRO/1000 T Server network card (82543GC).

I82545EM Intel PRO/1000 MT Server network card (82545EM).

10.25 NetworkAttachmentType

Network attachment type.

Null Null value, also means “not attached”.

NAT

Bridged

Internal

HostOnly

239

10 Enumerations (enums)

10.26 OVFResourceType

OVF resource type (as listed with CIM_ResourceAllocationSettingData; see for exam-
ple http://msdn.microsoft.com/en-us/library/cc136877(VS.85).aspx).

Other

ComputerSystem

Processor

Memory

IDEController

ParallelSCSIHBA

FCHBA

iSCSIHBA

IBHCA

EthernetAdapter

OtherNetworkAdapter

IOSlot

IODevice

FloppyDrive

CDDrive

DVDDrive

HardDisk

OtherStorageDevice

USBController

SoundCard

10.27 PortMode

The PortMode enumeration represents possible communication modes for the virtual
serial port device.

Disconnected Virtual device is not attached to any real host device.

HostPipe Virtual device is attached to a host pipe.

HostDevice Virtual device is attached to a host device.

240

10 Enumerations (enums)

10.28 ProcessorFeature

CPU features.

HWVirtEx

PAE

LongMode

10.29 Scope

Scope of the operation.
A generic enumeration used in various methods to define the action or argument

scope.

Global

Machine

Session

10.30 SessionState

Session state. This enumeration represents possible values of IMachine::sessionState
and ISession::state attributes. See individual enumerator descriptions for the meaning
for every value.

Null Null value (never used by the API).

Closed The machine has no open sessions (IMachine::sessionState); the session is
closed (ISession::state)

Open The machine has an open direct session (IMachine::sessionState); the session
is open (ISession::state)

Spawning A new (direct) session is being opened for the machine as a result of IVir-
tualBox::openRemoteSession() call (IMachine::sessionState); the session is cur-
rently being opened as a result of IVirtualBox::openRemoteSession() call (ISes-
sion::state)

Closing The direct session is being closed (IMachine::sessionState); the session is
being closed (ISession::state)

241

10 Enumerations (enums)

10.31 SessionType

Session type. This enumeration represents possible values of the ISession::type at-
tribute.

Null Null value (never used by the API).

Direct Direct session (opened by IVirtualBox::openSession())

Remote Remote session (opened by IVirtualBox::openRemoteSession())

Existing Existing session (opened by IVirtualBox::openExistingSession())

10.32 StorageBus

The connection type of the storage controller.

Null null value. Never used by the API.

IDE

SATA

SCSI

10.33 StorageControllerType

Storage controller type.

Null null value. Never used by the API.

LsiLogic

BusLogic

IntelAhci

PIIX3

PIIX4

ICH6

242

10 Enumerations (enums)

10.34 TSBool

Boolean variable having a third state, default.

False

True

Default

10.35 USBDeviceFilterAction

Actions for host USB device filters. See also: IHostUSBDeviceFilter, USBDeviceState

Null Null value (never used by the API).

Ignore Ignore the matched USB device.

Hold Hold the matched USB device.

10.36 USBDeviceState

USB device state. This enumeration represents all possible states of the USB device
physically attached to the host computer regarding its state on the host computer and
availability to guest computers (all currently running virtual machines).

Once a supported USB device is attached to the host, global USB filters
(IHost::USBDeviceFilters[]) are activated. They can either ignore the device, or
put it to USBDeviceState_Held state, or do nothing. Unless the device is ignored by
global filters, filters of all currently running guests (IUSBController::deviceFilters[])
are activated that can put it to USBDeviceState_Captured state.

If the device was ignored by global filters, or didn’t match any filters at all (including
guest ones), it is handled by the host in a normal way. In this case, the device state is
determined by the host and can be one of USBDeviceState_Unavailable, USBDeviceS-
tate_Busy or USBDeviceState_Available, depending on the current device usage.

Besides auto-capturing based on filters, the device can be manually captured by
guests (IConsole::attachUSBDevice()) if its state is USBDeviceState_Busy, USBDe-
viceState_Available or USBDeviceState_Held.

Note: Due to differences in USB stack implementations in Linux and
Win32, states USBDeviceState_Busy and USBDeviceState_vailable are appli-
cable only to the Linux version of the product. This also means that (ICon-
sole::attachUSBDevice()) can only succeed on Win32 if the device state is
USBDeviceState_Held.

See also: IHostUSBDevice, IHostUSBDeviceFilter

243

10 Enumerations (enums)

NotSupported Not supported by the VirtualBox server, not available to guests.

Unavailable Being used by the host computer exclusively, not available to guests.

Busy Being used by the host computer, potentially available to guests.

Available Not used by the host computer, available to guests (the host computer can
also start using the device at any time).

Held Held by the VirtualBox server (ignored by the host computer), available to
guests.

Captured Captured by one of the guest computers, not available to anybody else.

10.37 VRDPAuthType

VRDP authentication type.

Null Null value, also means “no authentication”.

External

Guest

10.38 VirtualSystemDescriptionType

Used with IVirtualSystemDescription to describe the type of a configuration value.

Ignore

OS

Name

Product

Vendor

Version

ProductUrl

VendorUrl

Description

License

Miscellaneous

244

10 Enumerations (enums)

CPU

Memory

HardDiskControllerIDE

HardDiskControllerSATA

HardDiskControllerSCSI

HardDiskImage

Floppy

CDROM

NetworkAdapter

USBController

SoundCard

10.39 VirtualSystemDescriptionValueType

Used with IVirtualSystemDescription::getValuesByType() to describe the value type to
fetch.

Reference

Original

Auto

ExtraConfig

245

11 Host-Guest Communication
Manager

The VirtualBox Host-Guest Communication Manager (HGCM) allows a guest applica-
tion or a guest driver to call a host shared library. The following features of VirtualBox
are implemented using HGCM:

• Shared Folders

• Shared Clipboard

• Guest configuration interface

The shared library contains a so called HGCM service. The guest HGCM clients
establish connections to the service to call it. When calling a HGCM service the client
supplies a function code and a number of parameters for the function.

11.1 Virtual Hardware Implementation

HGCM uses the VMM virtual PCI device to exchange data between the guest and the
host. The guest always acts as an initiator of requests. A request is constructed in the
guest physical memory, which must be locked by the guest. The physical address is
passed to the VMM device using a 32 bit out edx, eax instruction. The physical
memory must be allocated below 4GB by 64 bit guests.

The host parses the request header and data and queues the request for a host
HGCM service. The guest continues execution and usually waits on a HGCM event
semaphore.

When the request has been processed by the HGCM service, the VMM device sets
the completion flag in the request header, sets the HGCM event and raises an IRQ for
the guest. The IRQ handler signals the HGCM event semaphore and all HGCM callers
check the completion flag in the corresponding request header. If the flag is set, the
request is considered completed.

11.2 Protocol Specification

The HGCM protocol definitions are contained in the VBox/VBoxGuest.h

246

11 Host-Guest Communication Manager

11.2.1 Request Header

HGCM request structures contains a generic header (VMMDevHGCMRequestHeader):

Name Description
size Size of the entire request.
version Version of the header, must be set to 0x10001.
type Type of the request.
rc HGCM return code, which will be set by the VMM device.
reserved1 A reserved field 1.
reserved2 A reserved field 2.
flags HGCM flags, set by the VMM device.
result The HGCM result code, set by the VMM device.

Note:

• All fields are 32 bit.

• Fields from size to reserved2 are a standard VMM device request
header, which is used for other interfaces as well.

The type field indicates the type of the HGCM request:

Name (decimal value) Description
VMMDe-
vReq_HGCMConnect
(60)

Connect to a HGCM service.

VMMDe-
vReq_HGCMDisconnect
(61)

Disconnect from the service.

VMMDe-
vReq_HGCMCall32
(62)

Call a HGCM function using the 32 bit
interface.

VMMDe-
vReq_HGCMCall64
(63)

Call a HGCM function using the 64 bit
interface.

VMMDe-
vReq_HGCMCancel
(64)

Cancel a HGCM request currently being
processed by a host HGCM service.

The flags field may contain:

Name (hexadecimal value) Description
VBOX_HGCM_REQ_DONE
(0x00000001)

The request has been processed by
the host service.

VBOX_HGCM_REQ_CANCELLED
(0x00000002)

This request was cancelled.

247

11 Host-Guest Communication Manager

11.2.2 Connect

The connection request must be issued by the guest HGCM client before it can call the
HGCM service (VMMDevHGCMConnect):

Name Description
header The generic HGCM request header with type equal to

VMMDevReq_HGCMConnect (60).
type The type of the service location information (32 bit).
loca-
tion

The service location information (128 bytes).

clien-
tId

The client identifier assigned to the connecting client by the
HGCM subsystem (32 bit).

The type field tells the the HGCM how to look for the requested service:

Name
(hexadecimal
value)

Description

VMMDevHGCM-
Loc_LocalHost
(0x1)

The requested service is a shared library located
on the host and the location information contains
the library name.

VMMDevHGCM-
Loc_LocalHost_Existing
(0x2)

The requested service is a preloaded one and the
location information contains the service name.

Note: Currently preloaded HGCM services are hard-coded in VirtualBox:

• VBoxSharedFolders

• VBoxSharedClipboard

• VBoxGuestPropSvc

• VBoxSharedOpenGL

There is no difference between both types of HGCM services, only the location mech-
anism is different.

The client identifier is returned by the host and must be used in all subsequent
requests by the client.

11.2.3 Disconnect

This request disconnects the client and makes the client identifier invalid (VMMDe-
vHGCMDisconnect):

248

11 Host-Guest Communication Manager

Name Description
header The generic HGCM request header with type equal to

VMMDevReq_HGCMDisconnect (61).
clien-
tId

The client identifier previously returned by the connect request
(32 bit).

11.2.4 Call32 and Call64

Calls the HGCM service entry point (VMMDevHGCMCall) using 32 bit or 64 bit ad-
dresses:

Name Description
headerThe generic HGCM request header with type equal to either

VMMDevReq_HGCMCall32 (62) or VMMDevReq_HGCMCall64
(63).

cli-
en-
tId

The client identifier previously returned by the connect request
(32 bit).

func-
tion

The function code to be processed by the service (32 bit).

cParmsThe number of following parameters (32 bit). This value is 0 if the
function requires no parameters.

parms An array of parameter description structures
(HGCMFunctionParameter32 or HGCMFunctionParameter64).

The 32 bit parameter description (HGCMFunctionParameter32) consists of 32 bit
type field and 8 bytes of an opaque value, so 12 bytes in total. The 64 bit variant
(HGCMFunctionParameter64) consists of the type and 12 bytes of a value, so 16 bytes
in total.

249

11 Host-Guest Communication Manager

Type Format of the value
VMMDevHGCM-
ParmType_32bit
(1)

A 32 bit value.

VMMDevHGCM-
ParmType_64bit
(2)

A 64 bit value.

VMMDevHGCM-
Parm-
Type_PhysAddr
(3)

A 32 bit size followed by a 32 bit or 64 bit guest
physical address.

VMMDevHGCM-
ParmType_LinAddr
(4)

A 32 bit size followed by a 32 bit or 64 bit guest
linear address. The buffer is used both for guest to
host and for host to guest data.

VMMDevHGCM-
Parm-
Type_LinAddr_In
(5)

Same as VMMDevHGCMParmType_LinAddr but
the buffer is used only for host to guest data.

VMMDevHGCM-
Parm-
Type_LinAddr_Out
(6)

Same as VMMDevHGCMParmType_LinAddr but
the buffer is used only for guest to host data.

VMMDevHGCM-
Parm-
Type_LinAddr_Locked
(7)

Same as VMMDevHGCMParmType_LinAddr but
the buffer is already locked by the guest.

VMMDevHGCM-
Parm-
Type_LinAddr_Locked_In
(1)

Same as VMMDevHGCMParmType_LinAddr_In but
the buffer is already locked by the guest.

VMMDevHGCM-
Parm-
Type_LinAddr_Locked_Out
(1)

Same as VMMDevHGCMParmType_LinAddr_Out
but the buffer is already locked by the guest.

The

11.2.5 Cancel

This request cancels a call request (VMMDevHGCMCancel):

Name Description
header The generic HGCM request header with type equal to

VMMDevReq_HGCMCancel (64).

250

11 Host-Guest Communication Manager

11.3 Guest Software Interface

The guest HGCM clients can call HGCM services from both drivers and applications.

11.3.1 The Guest Driver Interface

The driver interface is implemented in the VirtualBox guest additions driver
(VBoxGuest), which works with the the VMM virtual device. Drivers must
use the VBox Guest Library (VBGL), which provides an API for HGCM clients
(VBox/VBoxGuestLib.h and VBox/VBoxGuest.h).

DECLVBGL(int) VbglHGCMConnect (VBGLHGCMHANDLE *pHandle, VBoxGuestHGCMConnectInfo *pData);

Connects to the service:

VBoxGuestHGCMConnectInfo data;

memset (&data, sizeof (VBoxGuestHGCMConnectInfo));

data.result = VINF_SUCCESS;
data.Loc.type = VMMDevHGCMLoc_LocalHost_Existing;
strcpy (data.Loc.u.host.achName, "VBoxSharedFolders");

rc = VbglHGCMConnect (&handle, &data);

if (VBOX_SUCCESS (rc))
{

rc = data.result;
}

if (VBOX_SUCCESS (rc))
{

/* Get the assigned client identifier. */
ulClientID = data.u32ClientID;

}

DECLVBGL(int) VbglHGCMDisconnect (VBGLHGCMHANDLE handle, VBoxGuestHGCMDisconnectInfo *pData);

Disconnects from the service.

VBoxGuestHGCMDisconnectInfo data;

RtlZeroMemory (&data, sizeof (VBoxGuestHGCMDisconnectInfo));

data.result = VINF_SUCCESS;
data.u32ClientID = ulClientID;

251

11 Host-Guest Communication Manager

rc = VbglHGCMDisconnect (handle, &data);

DECLVBGL(int) VbglHGCMCall (VBGLHGCMHANDLE handle, VBoxGuestHGCMCallInfo *pData, uint32_t cbData);

Calls a function in the service.

typedef struct _VBoxSFRead
{

VBoxGuestHGCMCallInfo callInfo;

/** pointer, in: SHFLROOT

* Root handle of the mapping which name is queried.

*/
HGCMFunctionParameter root;

/** value64, in:

* SHFLHANDLE of object to read from.

*/
HGCMFunctionParameter handle;

/** value64, in:

* Offset to read from.

*/
HGCMFunctionParameter offset;

/** value64, in/out:

* Bytes to read/How many were read.

*/
HGCMFunctionParameter cb;

/** pointer, out:

* Buffer to place data to.

*/
HGCMFunctionParameter buffer;

} VBoxSFRead;

/** Number of parameters */
#define SHFL_CPARMS_READ (5)

...

VBoxSFRead data;

/* The call information. */
data.callInfo.result = VINF_SUCCESS; /* Will be returned by HGCM. */
data.callInfo.u32ClientID = ulClientID; /* Client identifier. */
data.callInfo.u32Function = SHFL_FN_READ; /* The function code. */
data.callInfo.cParms = SHFL_CPARMS_READ; /* Number of parameters. */

/* Initialize parameters. */

252

11 Host-Guest Communication Manager

data.root.type = VMMDevHGCMParmType_32bit;
data.root.u.value32 = pMap->root;

data.handle.type = VMMDevHGCMParmType_64bit;
data.handle.u.value64 = hFile;

data.offset.type = VMMDevHGCMParmType_64bit;
data.offset.u.value64 = offset;

data.cb.type = VMMDevHGCMParmType_32bit;
data.cb.u.value32 = *pcbBuffer;

data.buffer.type = VMMDevHGCMParmType_LinAddr_Out;
data.buffer.u.Pointer.size = *pcbBuffer;
data.buffer.u.Pointer.u.linearAddr = (uintptr_t)pBuffer;

rc = VbglHGCMCall (handle, &data.callInfo, sizeof (data));

if (VBOX_SUCCESS (rc))
{

rc = data.callInfo.result;

pcbBuffer = data.cb.u.value32; / This is returned by the HGCM service. */
}

11.3.2 Guest Application Interface

Applications call the VirtualBox guest additions driver to utilize the HGCM interface.
There are IOCTL’s which correspond to the Vbgl* functions:

• VBOXGUEST_IOCTL_HGCM_CONNECT

• VBOXGUEST_IOCTL_HGCM_DISCONNECT

• VBOXGUEST_IOCTL_HGCM_CALL

These IOCTL’s get the same input buffer as VbglHGCM* functions and the output
buffer has the same format as the input buffer. The same address can be used as the
input and output buffers.

For example see the guest part of shared clipboard, which runs as an application
and uses the HGCM interface.

11.4 HGCM Service Implementation

The HGCM service is a shared library with a specific set of entry points. The library
must export the VBoxHGCMSvcLoad entry point:

extern "C" DECLCALLBACK(DECLEXPORT(int)) VBoxHGCMSvcLoad (VBOXHGCMSVCFNTABLE *ptable)

253

11 Host-Guest Communication Manager

The service must check the ptable->cbSize and ptable->u32Version fields
of the input structure and fill the remaining fields with function pointers of entry points
and the size of the required client buffer size.

The HGCM service gets a dedicated thread, which calls service entry points syn-
chronously, that is the service will be called again only when a previous call has re-
turned. However the guest calls can be processed asynchronously. The service must
call a completion callback when the operation is actually completed. The callback can
be issued from another thread as well.

Service entry points are listed in the VBox/hgcmsvc.h in the VBOXHGCMSVCFNTABLE
structure.

En-
try

Description

pf-
nUn-
load

The service is being unloaded.

pfn-
Con-
nect

A client u32ClientID is connected to the service. The
pvClient parameter points to an allocated memory buffer
which can be used by the service to store the client information.

pfnDis-
con-
nect

A client is being disconnected.

pfn-
Call

A guest client calls a service function. The callHandle must be
used in the VBOXHGCMSVCHELPERS::pfnCallComplete callback
when the call has been processed.

pfn-
Host-
Call

Called by the VirtualBox host components to perform functions
which should be not accessible by the guest. Usually this entry
point is used by VirtualBox to configure the service.

pfn-
SaveS-
tate

The VM state is being saved and the service must save relevant
information using the SSM API (VBox/ssm.h).

pfn-
Load-
State

The VM is being restored from the saved state and the service
must load the saved information and be able to continue
operations from the saved state.

254

	1 Introduction
	1.1 Modularity: the building blocks of VirtualBox
	1.2 Two guises of the same "Main API": the web service or COM/XPCOM
	1.3 About web services in general
	1.4 Running the web service
	1.4.1 Command line options of vboxwebsrv
	1.4.2 Authenticating at web service logon
	1.4.3 Solaris host: starting the web service via SMF

	2 The object-oriented web service (OOWS)
	2.1 The object-oriented web service for JAX-WS
	2.1.1 Preparations
	2.1.2 Getting started: running the sample code
	2.1.3 Logging on to the web service
	2.1.4 Obtaining basic machine information. Reading attributes
	2.1.5 Changing machine settings. Sessions
	2.1.6 Starting machines
	2.1.7 Object management

	2.2 The object-oriented web service for Python

	3 Using the raw web service with any language
	3.1 Raw web service example for Java and Axis
	3.2 Raw web service example for Perl
	3.3 Programming considerations for the raw web service
	3.3.1 Fundamental conventions
	3.3.2 Example: A typical web service client session
	3.3.3 Managed object references
	3.3.4 Some more detail about web service operation

	4 Using the Main API documentation for web service clients
	5 The VirtualBox COM/XPCOM API
	5.1 Python XPCOM API
	5.2 C++ COM API
	5.3 C binding to XPCOM API
	5.3.1 Getting started
	5.3.2 XPCOM initialization
	5.3.3 XPCOM method invocation
	5.3.4 XPCOM attribute access
	5.3.5 String handling
	5.3.6 XPCOM uninitialization
	5.3.7 Compiling and linking

	6 The VirtualBox shell
	7 Main API change log
	7.1 Incompatible API changes with version 2.1
	7.2 Incompatible API changes with version 2.2

	8 License information
	9 Classes (interfaces)
	9.1 IAppliance
	9.1.1 Attributes
	9.1.2 getWarnings
	9.1.3 importMachines
	9.1.4 interpret
	9.1.5 read
	9.1.6 write

	9.2 IAudioAdapter
	9.2.1 Attributes

	9.3 IBIOSSettings
	9.3.1 Attributes

	9.4 IConsole
	9.4.1 Attributes
	9.4.2 adoptSavedState
	9.4.3 attachUSBDevice
	9.4.4 createSharedFolder
	9.4.5 detachUSBDevice
	9.4.6 discardCurrentSnapshotAndState
	9.4.7 discardCurrentState
	9.4.8 discardSavedState
	9.4.9 discardSnapshot
	9.4.10 findUSBDeviceByAddress
	9.4.11 findUSBDeviceById
	9.4.12 getDeviceActivity
	9.4.13 getGuestEnteredACPIMode
	9.4.14 getPowerButtonHandled
	9.4.15 pause
	9.4.16 powerButton
	9.4.17 powerDown
	9.4.18 powerDownAsync
	9.4.19 powerUp
	9.4.20 powerUpPaused
	9.4.21 registerCallback
	9.4.22 removeSharedFolder
	9.4.23 reset
	9.4.24 resume
	9.4.25 saveState
	9.4.26 sleepButton
	9.4.27 takeSnapshot
	9.4.28 unregisterCallback

	9.5 IConsoleCallback
	9.5.1 onAdditionsStateChange
	9.5.2 onCanShowWindow
	9.5.3 onDVDDriveChange
	9.5.4 onFloppyDriveChange
	9.5.5 onKeyboardLedsChange
	9.5.6 onMouseCapabilityChange
	9.5.7 onMousePointerShapeChange
	9.5.8 onNetworkAdapterChange
	9.5.9 onParallelPortChange
	9.5.10 onRuntimeError
	9.5.11 onSerialPortChange
	9.5.12 onSharedFolderChange
	9.5.13 onShowWindow
	9.5.14 onStateChange
	9.5.15 onStorageControllerChange
	9.5.16 onUSBControllerChange
	9.5.17 onUSBDeviceStateChange
	9.5.18 onVRDPServerChange

	9.6 IDHCPServer
	9.6.1 Attributes
	9.6.2 setConfiguration
	9.6.3 start
	9.6.4 stop

	9.7 IDVDDrive
	9.7.1 Attributes
	9.7.2 captureHostDrive
	9.7.3 getHostDrive
	9.7.4 getImage
	9.7.5 mountImage
	9.7.6 unmount

	9.8 IDVDImage
	9.9 IDisplay
	9.9.1 Attributes
	9.9.2 drawToScreen
	9.9.3 getFramebuffer
	9.9.4 invalidateAndUpdate
	9.9.5 lockFramebuffer
	9.9.6 registerExternalFramebuffer
	9.9.7 resizeCompleted
	9.9.8 setFramebuffer
	9.9.9 setSeamlessMode
	9.9.10 setVideoModeHint
	9.9.11 setupInternalFramebuffer
	9.9.12 takeScreenShot
	9.9.13 unlockFramebuffer
	9.9.14 updateCompleted

	9.10 IFloppyDrive
	9.10.1 Attributes
	9.10.2 captureHostDrive
	9.10.3 getHostDrive
	9.10.4 getImage
	9.10.5 mountImage
	9.10.6 unmount

	9.11 IFloppyImage
	9.12 IFramebuffer
	9.12.1 Attributes
	9.12.2 copyScreenBits
	9.12.3 getVisibleRegion
	9.12.4 lock
	9.12.5 notifyUpdate
	9.12.6 operationSupported
	9.12.7 requestResize
	9.12.8 setVisibleRegion
	9.12.9 solidFill
	9.12.10 unlock
	9.12.11 videoModeSupported

	9.13 IFramebufferOverlay
	9.13.1 Attributes
	9.13.2 move

	9.14 IGuest
	9.14.1 Attributes
	9.14.2 getStatistic
	9.14.3 setCredentials

	9.15 IGuestOSType
	9.15.1 Attributes

	9.16 IHardDisk
	9.16.1 Attributes
	9.16.2 cloneTo
	9.16.3 compact
	9.16.4 createBaseStorage
	9.16.5 createDiffStorage
	9.16.6 deleteStorage
	9.16.7 getProperties
	9.16.8 getProperty
	9.16.9 mergeTo
	9.16.10 reset
	9.16.11 setProperties
	9.16.12 setProperty

	9.17 IHardDiskAttachment
	9.17.1 Attributes

	9.18 IHardDiskFormat
	9.18.1 Attributes
	9.18.2 describeProperties

	9.19 IHost
	9.19.1 Attributes
	9.19.2 createUSBDeviceFilter
	9.19.3 findHostDVDDrive
	9.19.4 findHostFloppyDrive
	9.19.5 findHostNetworkInterfaceById
	9.19.6 findHostNetworkInterfaceByName
	9.19.7 findHostNetworkInterfacesOfType
	9.19.8 findUSBDeviceByAddress
	9.19.9 findUSBDeviceById
	9.19.10 getProcessorDescription
	9.19.11 getProcessorFeature
	9.19.12 getProcessorSpeed
	9.19.13 insertUSBDeviceFilter
	9.19.14 removeUSBDeviceFilter

	9.20 IHostDVDDrive
	9.20.1 Attributes

	9.21 IHostFloppyDrive
	9.21.1 Attributes

	9.22 IHostNetworkInterface
	9.22.1 Attributes
	9.22.2 dhcpRediscover
	9.22.3 enableDynamicIpConfig
	9.22.4 enableStaticIpConfig
	9.22.5 enableStaticIpConfigV6

	9.23 IHostUSBDevice
	9.23.1 Attributes

	9.24 IHostUSBDeviceFilter
	9.24.1 Attributes

	9.25 IInternalMachineControl
	9.25.1 adoptSavedState
	9.25.2 autoCaptureUSBDevices
	9.25.3 beginSavingState
	9.25.4 beginTakingSnapshot
	9.25.5 captureUSBDevice
	9.25.6 detachAllUSBDevices
	9.25.7 detachUSBDevice
	9.25.8 discardCurrentSnapshotAndState
	9.25.9 discardCurrentState
	9.25.10 discardSnapshot
	9.25.11 endSavingState
	9.25.12 endTakingSnapshot
	9.25.13 getIPCId
	9.25.14 lockMedia
	9.25.15 onSessionEnd
	9.25.16 pullGuestProperties
	9.25.17 pushGuestProperties
	9.25.18 pushGuestProperty
	9.25.19 runUSBDeviceFilters
	9.25.20 updateState

	9.26 IInternalSessionControl
	9.26.1 accessGuestProperty
	9.26.2 assignMachine
	9.26.3 assignRemoteMachine
	9.26.4 enumerateGuestProperties
	9.26.5 getPID
	9.26.6 getRemoteConsole
	9.26.7 onDVDDriveChange
	9.26.8 onFloppyDriveChange
	9.26.9 onNetworkAdapterChange
	9.26.10 onParallelPortChange
	9.26.11 onSerialPortChange
	9.26.12 onSharedFolderChange
	9.26.13 onShowWindow
	9.26.14 onStorageControllerChange
	9.26.15 onUSBControllerChange
	9.26.16 onUSBDeviceAttach
	9.26.17 onUSBDeviceDetach
	9.26.18 onVRDPServerChange
	9.26.19 uninitialize
	9.26.20 updateMachineState

	9.27 IKeyboard
	9.27.1 putCAD
	9.27.2 putScancode
	9.27.3 putScancodes

	9.28 IMachine
	9.28.1 Attributes
	9.28.2 addStorageController
	9.28.3 attachHardDisk
	9.28.4 canShowConsoleWindow
	9.28.5 createSharedFolder
	9.28.6 deleteSettings
	9.28.7 detachHardDisk
	9.28.8 discardSettings
	9.28.9 enumerateGuestProperties
	9.28.10 export
	9.28.11 findSnapshot
	9.28.12 getBootOrder
	9.28.13 getExtraData
	9.28.14 getGuestProperty
	9.28.15 getGuestPropertyTimestamp
	9.28.16 getGuestPropertyValue
	9.28.17 getHardDisk
	9.28.18 getHardDiskAttachmentsOfController
	9.28.19 getNetworkAdapter
	9.28.20 getNextExtraDataKey
	9.28.21 getParallelPort
	9.28.22 getSerialPort
	9.28.23 getSnapshot
	9.28.24 getStorageControllerByName
	9.28.25 removeSharedFolder
	9.28.26 removeStorageController
	9.28.27 saveSettings
	9.28.28 saveSettingsWithBackup
	9.28.29 setBootOrder
	9.28.30 setCurrentSnapshot
	9.28.31 setExtraData
	9.28.32 setGuestProperty
	9.28.33 setGuestPropertyValue
	9.28.34 showConsoleWindow

	9.29 IMachineDebugger
	9.29.1 Attributes
	9.29.2 dumpStats
	9.29.3 getStats
	9.29.4 injectNMI
	9.29.5 resetStats

	9.30 IManagedObjectRef
	9.30.1 getInterfaceName
	9.30.2 release

	9.31 IMedium
	9.31.1 Attributes
	9.31.2 close
	9.31.3 getSnapshotIds
	9.31.4 lockRead
	9.31.5 lockWrite
	9.31.6 unlockRead
	9.31.7 unlockWrite

	9.32 IMouse
	9.32.1 Attributes
	9.32.2 putMouseEvent
	9.32.3 putMouseEventAbsolute

	9.33 INetworkAdapter
	9.33.1 Attributes
	9.33.2 attachToBridgedInterface
	9.33.3 attachToHostOnlyInterface
	9.33.4 attachToInternalNetwork
	9.33.5 attachToNAT
	9.33.6 detach

	9.34 IParallelPort
	9.34.1 Attributes

	9.35 IPerformanceCollector
	9.35.1 Attributes
	9.35.2 disableMetrics
	9.35.3 enableMetrics
	9.35.4 getMetrics
	9.35.5 queryMetricsData
	9.35.6 setupMetrics

	9.36 IPerformanceMetric
	9.36.1 Attributes

	9.37 IProgress
	9.37.1 Attributes
	9.37.2 cancel
	9.37.3 waitForCompletion
	9.37.4 waitForOperationCompletion

	9.38 IRemoteDisplayInfo
	9.38.1 Attributes

	9.39 ISerialPort
	9.39.1 Attributes

	9.40 ISession
	9.40.1 Attributes
	9.40.2 close

	9.41 ISharedFolder
	9.41.1 Attributes

	9.42 ISnapshot
	9.42.1 Attributes

	9.43 IStorageController
	9.43.1 Attributes
	9.43.2 GetIDEEmulationPort
	9.43.3 SetIDEEmulationPort

	9.44 ISystemProperties
	9.44.1 Attributes

	9.45 IUSBController
	9.45.1 Attributes
	9.45.2 createDeviceFilter
	9.45.3 insertDeviceFilter
	9.45.4 removeDeviceFilter

	9.46 IUSBDevice
	9.46.1 Attributes

	9.47 IUSBDeviceFilter
	9.47.1 Attributes

	9.48 IVRDPServer
	9.48.1 Attributes

	9.49 IVirtualBox
	9.49.1 Attributes
	9.49.2 createAppliance
	9.49.3 createDHCPServer
	9.49.4 createHardDisk
	9.49.5 createLegacyMachine
	9.49.6 createMachine
	9.49.7 createSharedFolder
	9.49.8 findDHCPServerByNetworkName
	9.49.9 findDVDImage
	9.49.10 findFloppyImage
	9.49.11 findHardDisk
	9.49.12 findMachine
	9.49.13 getDVDImage
	9.49.14 getExtraData
	9.49.15 getFloppyImage
	9.49.16 getGuestOSType
	9.49.17 getHardDisk
	9.49.18 getMachine
	9.49.19 getNextExtraDataKey
	9.49.20 openDVDImage
	9.49.21 openExistingSession
	9.49.22 openFloppyImage
	9.49.23 openHardDisk
	9.49.24 openMachine
	9.49.25 openRemoteSession
	9.49.26 openSession
	9.49.27 registerCallback
	9.49.28 registerMachine
	9.49.29 removeDHCPServer
	9.49.30 removeSharedFolder
	9.49.31 saveSettings
	9.49.32 saveSettingsWithBackup
	9.49.33 setExtraData
	9.49.34 unregisterCallback
	9.49.35 unregisterMachine
	9.49.36 waitForPropertyChange

	9.50 IVirtualBoxCallback
	9.50.1 onExtraDataCanChange
	9.50.2 onExtraDataChange
	9.50.3 onGuestPropertyChange
	9.50.4 onMachineDataChange
	9.50.5 onMachineRegistered
	9.50.6 onMachineStateChange
	9.50.7 onMediaRegistered
	9.50.8 onSessionStateChange
	9.50.9 onSnapshotChange
	9.50.10 onSnapshotDiscarded
	9.50.11 onSnapshotTaken

	9.51 IVirtualBoxErrorInfo
	9.51.1 Attributes

	9.52 IVirtualSystemDescription
	9.52.1 Attributes
	9.52.2 addDescription
	9.52.3 getDescription
	9.52.4 getDescriptionByType
	9.52.5 getValuesByType
	9.52.6 setFinalValues

	9.53 IWebsessionManager
	9.53.1 getSessionObject
	9.53.2 logoff
	9.53.3 logon

	10 Enumerations (enums)
	10.1 AccessMode
	10.2 AudioControllerType
	10.3 AudioDriverType
	10.4 BIOSBootMenuMode
	10.5 CIMOSType
	10.6 ClipboardMode
	10.7 DataFlags
	10.8 DataType
	10.9 DeviceActivity
	10.10 DeviceType
	10.11 DriveState
	10.12 FramebufferAccelerationOperation
	10.13 FramebufferPixelFormat
	10.14 GuestStatisticType
	10.15 HardDiskFormatCapabilities
	10.16 HardDiskType
	10.17 HardDiskVariant
	10.18 HostNetworkInterfaceMediumType
	10.19 HostNetworkInterfaceStatus
	10.20 HostNetworkInterfaceType
	10.21 MachineState
	10.22 MediaState
	10.23 MouseButtonState
	10.24 NetworkAdapterType
	10.25 NetworkAttachmentType
	10.26 OVFResourceType
	10.27 PortMode
	10.28 ProcessorFeature
	10.29 Scope
	10.30 SessionState
	10.31 SessionType
	10.32 StorageBus
	10.33 StorageControllerType
	10.34 TSBool
	10.35 USBDeviceFilterAction
	10.36 USBDeviceState
	10.37 VRDPAuthType
	10.38 VirtualSystemDescriptionType
	10.39 VirtualSystemDescriptionValueType

	11 Host-Guest Communication Manager
	11.1 Virtual Hardware Implementation
	11.2 Protocol Specification
	11.2.1 Request Header
	11.2.2 Connect
	11.2.3 Disconnect
	11.2.4 Call32 and Call64
	11.2.5 Cancel

	11.3 Guest Software Interface
	11.3.1 The Guest Driver Interface
	11.3.2 Guest Application Interface

	11.4 HGCM Service Implementation

